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Abstract

The effects of magnetism on the Bain transformation of α-phase FeNi systems are investigated

by using the full potential linearized augmented plane wave (FLAPW) method based on the gen-

eralized gradient approximation (GGA). We found that Ni impurity in bcc Fe increases the lattice

constant in ferromagnetic (FM) states, but not in the nonmagnetic (NM) states. The shear mod-

ulus G and Young’s modulus E of bcc Fe are also increased by raising the concentration of nickel.

All the compositions considered show high shear anisotropy and the ratio of the bulk to shear mod-

ulus is greater than 1.75 implying ductility. The mean sound velocities in the [100] directions are

greater than in the [110] directions. The Bain transformation, which is a component of martensitic

transformation, has also been studied to reveal that NixFe1−x alloys are elastically unstable in the

NM states, but not so in the FM states. The electronic structures explain these results in terms

of the density of states at the Fermi level. It is evident that magnetism cannot be neglected when

dealing with the Bain transformation in iron and its alloys.
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I. INTRODUCTION

Nickel and iron form substantial solid solutions over the complete range of compositions.

The addition of nickel to iron enhances the strength and toughness of iron. In its α-phase,

the iron-nickel alloy forms the base of structural steel; henceforth, the mechanical properties

of these alloys received more attention as compared to other properties. The body-centered

cubic (bcc) α-phase is stable from pure iron to ∼ 10 % Ni and increasing the Ni concentration

in α-Fe reduces its stability with respect to γ-Fe which is why nickel is designated a γ-

stabilizer.1 Fe-Ni alloys are also of interest in connection with Invar effect and martensitic

transformation at low temperatures.2,3 Fe-Ni alloys are amongst the most studied magnetic

materials and are important in understanding the mechanical and magnetic properties of

steels. Considerable efforts have been made to understand the stability of magnetic materials

in terms of magnetism and Bain transformation,4–8 but with the focus on Bain path of either

pure bcc Fe, or fcc Fe, or hcp Fe, rather than on the consequences of the presence of nickel

as a solute.

Much attention has also been given in the past to Fe-Ni alloys near Invar composi-

tions or ordered compounds (Fe3Ni, FeNi, or FeNi3), but not dilute alloys with less than

10% nickel.2,3,9,10 Recently,11 we studied the electronic and magnetic structures of transition

metal impurities in bcc Fe where we also found that Ni impurity enhances the magnetism

of bcc Fe. To further elucidate the effect of Ni on iron, we examine here the elastic proper-

ties, thermodynamics, and the effects of magnetism on the Bain path using first-principles

calculations.

II. COMPUTATION MODEL AND METHODS

A. Computation Model

We considered a 3 × 3 × 3 supercell of the primitive cell of bcc Fe, which contains 27

atomic sites. The centered Fe atom is replaced by the Ni atom; we denote the model as

Ni1Fe26. If we replace the central Fe atom by Ni, then the space group is Im3m (space group

#229), and the Ni atom is at the (2a) Wyckoff position, its 8 nearest neighbor Fe atoms

(denoted as Fe1) are on the (16f) Wyckoff sites, the 6 second nearest neighbors (denoted as

Fe2) are on the (12e) Wyckoff sites, and the 12 third nearest neighbors (denoted as Fe3) are
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on the (24h) Wyckoff sites. A 2×2×2 supercell of a conventional cubic cell of bcc Fe, which

contains 16 atoms, was also considered and this system is denoted as Ni1Fe15. The supercell

is a simple cubic unit cell, with lattice constant twice that of the bcc structure. The space

group is Pm3m (space group #221), and the Ni atom is on the (1a) Wyckoff position. The

neighboring atoms are on (8g), (3c), (3d), and (1b) sites, in order of increasing distance from

the central Ni atom. The corresponding Ni concentrations are 3.7 and 6.25 at.% for 3×3×3

and 2 × 2 × 2 supercells, respectively. Pure bcc Fe, bcc Ni, and fcc Ni as references were

also considered.

B. Electronic structure calculation method

The Kohn-Sham equation was solved self-consistently in terms of the total energy all-

electron full-potential linearized augmented plane-wave (FLAPW) method12,13 based on the

generalized gradient approximation (GGA) for the exchange-correlation potential.14 The

integrations over the three dimensional Brillouin zone (3D-BZ) were performed by the im-

proved tetrahedron method15 over a 13×13×13 Monkhorst-Pack mesh16 in the 3D-BZ, which

corresponds to 84 k-points inside the irreducible wedge of the 3D-BZ. The linearized aug-

mented plane-wave (LAPW) basis set was expanded using a plane wave with an energy

cutoff at 4 (2π/a), where a is the lattice parameter. Lattice harmonics with l ≤ 8 were

employed to expand the charge density, potential, and wave functions inside each muffin-tin

(MT) sphere with the radius of 2.20 a.u. for both Fe and Ni atoms. The star-function

cutoff of 16.73 (2π/a) was employed for depicting the charge density and potential in the

interstitial region. The core electrons were treated fully relativistically, and the valence

electrons were treated scalar relativistically. To ensure the orthogonality between core and

valence states, we employed the explicit orthogonalization (XO) method.17 Self-consistency

was assumed when the difference between input and output charge (spin) density is less than

1.0× 10−5 electrons/a.u.3 The convergence of these computational parameters was carefully

checked.18
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C. Methods for elastic properties

Calculations were carried out on nonmagnetic (NM) and ferromagnetic (FM) states, to

find the optimized lattice constant by fitting the total energy data at various lattice constants

to the Birch-Murnaghan equation of state (EOS),19 which also provides the bulk modulus

B.

Since the considered systems are cubic, there are only three independent elastic constants;

C11, C12, and C44. These elastic constants can be determined by calculating the total energy

as a function of the shears described below. To determine C11 and C12, we considered a

volume-conserved tetragonal strain in such a way as to modify the cubic crystal axes by

applying the following strain matrix,











1 + δ 0 0

0 1 + δ 0

0 0 (1 + δ)−2











where δ is the amount of strain ±0.03 imposed on the crystal. The change in the strain

energy density (u) as a function of strain is given by

u = 6C ′δ2 +O(δ3), (1)

where C ′ is the tetragonal shear constant defined by (C11-C12)/2. By calculating C ′ and

bulk modulus relation B =1

3
(C11+2C12) one can estimate C11 and C12. We must keep in

mind that the bulk modulus B was calculated by using the EOS.19 To determine C44, the

following volume-conserved orthorhombic distortion











1 δ 0

δ 1 0

0 0 (1− δ2)−1











was considered and C44 can be calculated from

u = 2C44δ
2 +O(δ4). (2)

The above elastic constants can be put into a more general way, i.e, the single-crystal shear

moduli for the {100} plane along the [010] direction and for the {110} plane along the
[

110
]
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direction are simply given by G{100} = C44 and G{110} = (C11 −C12)/2, respectively.
20 Once

C12 and C44 are known, it becomes possible to calculate the Cauchy pressure CP = C12−C44.

The shear modulus G, Young’s modulus E, Poisson’s ratio ν, and shear anisotropy factor

A for polycrystalline aggregates can be calculated from the elastic constants. The shear

modulus is bounded by the Reuss’ GR modulus and Voigt’s GV one which represent their

lower and upper limits, respectively.21,22 For cubic lattices these moduli are determined by

GR =
5(C11 − C12)C44

4C44 + 3(C11 − C12)
, (3)

and

GV =
(C11 − C12 + 3C44)

5
. (4)

Despite wide usage, neither Russ’ nor Voigt’s relation is believed to be exact. Hill23 suggested

an averaging by arithmetic mean of GR and GV

G =
1

2
(GR +GV ). (5)

The bulk and shear moduli are used to calculate the Young’s modulus

E =
9BG

3B +G
, (6)

and the Poisson’s ratio

ν =
3B − E

6B
. (7)

The shear anisotropic factor A can be calculated by using the following relation24

A =
2C44

C11 − C12

. (8)

D. Methods for thermodynamic data

Using the equilibrium lattice constant, the formation enthalpy ∆H per atom of NinFem

was calculated as follows:

∆H =
H (NinFem)−mH (Fe)− nH (Ni)

m+ n
, (9)

where H(NinFem) is the enthalpy of NinFem with m = 26, 15 and n = 1, and H(Fe) and

H(Ni) are the total energies per atom of the ground states of bcc Fe and fcc Ni, respectively.
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The Debye model25 was used to calculate the mean isotropic velocity vm which is given

by

vm =

[

1

3

(

1

v3⊥
+

2

v3‖

)]−1/3

, (10)

where the longitudinal v⊥ and transverse v‖ velocities are given by

v⊥ =
√

(B + 4G/3)/ρ, (11)

and

v‖ =
√

G/ρ. (12)

where ρ denotes the density of material.

Once we know all the elastic constants of a cubic system, we can also examine the

behavior of sound velocities in different crystallographic directions, e.g., [100], [110], or [111]

directions.26 The velocity of longitudinal (vl) and transverse (vt) elastic wave in the [100]

direction is given by

vl =

(

C11

ρ

)1/2

, vt =

(

C44

ρ

)1/2

, (13)

Similarly, for the [110] direction

vl =

(

C11 + C12 + 2C44

2ρ

)1/2

, vt =

(

C11 − C12

2ρ

)1/2

, (14)

and for the [111] direction, the velocities can be expressed as

vl =

(

C11 + 2C12 + 4C44

3ρ

)1/2

, vt =

(

C11 − C12 + C44

3ρ

)1/2

. (15)

vl and vt were used to distinguish it from the isotropic velocities given in Eqs. (10–12).

III. RESULTS AND DISCUSSION

A. Formation Enthalpy

The calculated lattice parameters of bcc Fe, Ni, fcc Ni, bcc Ni1Fe26, and Ni1Fe15 in the

NM and FM are presented in Table I. The lattice constant of bcc Fe is calculated to be

2.76 Å (2.83 Å) in the NM (FM) state which is comparable with the previous calculations of

2.84 Å in the FM state and 2.76 Å in the NM state27 and the experimental observations of

2.87 Å.26 The equilibrium lattice constant of Ni1Fe26 is determined to be 2.76 (2.84) Å in the

6



TABLE I. The calculated lattice constant (a) in units of Å of bcc Fe, bcc Ni, fcc Ni, and bcc

Ni1Fe26 and Ni1Fe15. Both the nonmagnetic (NM) and ferromagnetic (FM) results are listed. The

experimental values (Expt.) of the bcc Fe,16 bcc Ni,34 fcc Ni,16 and bcc Ni1Fe26,
28 and the other

theoretical results27 (Other) are also listed for comparison.

bcc Fe bcc Ni fcc Ni Ni1Fe26 Ni1Fe15

NM 2.76 2.79 3.51 2.76 2.76

FM 2.83 2.80 3.52 2.84 2.85

Expt. 2.87 2.82 3.52 - -

Other 2.83 2.80 3.52 - -

NM (FM) state. The corresponding values for Ni1Fe15 are determined to be 2.76 (2.85) Å

in the NM (FM) state. Table I shows that the lattice constant of bcc Fe increases with the

Ni concentrations. This is consistent with experimental observations, which show that Ni

as a solute slightly expands the lattice constant of bcc Fe.28 It is interesting to find that the

lattice parameter of bcc Fe is not affected by the Ni addition in the NM states; this can be

attributed to the magnetovolume effect.29 Therefore, Ni expands the lattice of bcc Fe in the

FM state, but not in the NM state which suggests that the ferromagnetic interactions are

responsible for the increment of the lattice constant of Fe with the Ni concentrations. The

present calculated values are slightly smaller than those determined at room temperature

as might be expected from thermal expansion,31 but it is encouraging that the trend of the

lattice parameter as a function of the nickel concentration is correctly reproduced.31,32 It is

also noticeable that ab initio calculations usually give trends and it may underestimate or

overestimate the lattice parameters. Our previous calculations on bcc Fe-based materials

show that atomic relaxation around the impurities is negligible.11,33

Using the optimized lattice parameters, ∆H was calculated using Eq. (9) and the results

are given in Fig. 1, which shows ∆H of fcc NiFe systems taken from Ref. 10. Note that

∆H of a system is nothing more than the total energy of the system at zero pressure and

zero kelvin at the corresponding equilibrium lattice parameter. The formation enthalpy

is measured relative to bcc Fe and fcc Ni. We see that the small addition of Ni in bcc

Fe increases ∆H . Based on previous10 and present study,it can be summarized that the
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FIG. 1. Calculated formation energy (kJ/mol atom) of bcc Fe, Ni, Ni1Fe15, Ni1Fe26, and fcc Ni

versus the Ni concentration. Open symbols represent our work (this) and filled symbols show other

calculated values (other) taken from Ref. 10. Circles (triangles) indicate the bcc (fcc) systems.

addition of Ni to Fe stabilizes fcc structures and destabilize the bcc structures, consistent

with the experimental phase diagram.1

B. Elastic Properties and Thermodynamics

In order to obtain the elastic properties, ±0.03 strains were imposed as discussed in

Eqs. (1) and (2). The calculated bulk moduli and elastic constants of bcc NixFe1−x and fcc

Ni are shown in Table II. The calculated elastic constants of bcc Fe and fcc Ni are close to

the experimental values, and confirm that the number of k-points and the number of basis

functions, used in these calculations, are sufficient to reproduce the experimental data.18 All

the systems have positive elastic constants which satisfy the mechanical stability condition

of a crystal.20 However, bcc Ni is mechanically unstable due to the negative estimated value

of G{100}. Although it is mechanically unstable, bcc Ni has been successfully achieved as a

thin film on GaAs substrate.34 If G{110} is larger than G{100}, then it is easier to shear on

the {110} plane than on the {100} plane. It is noticeable in Table II both the bulk modulus

and elastic constants(C11 and C12) of bcc N1Fe26 are increased. With the addition of Ni in

bcc Fe, G{110} is increasing while G{100} is decreasing.

Table III lists the shear G and Young’s modulus E, B/G, Cauchy pressure CP , anisotropic
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TABLE II. The calculated elastic constants and bulk moduli in the units of GPa of bcc Fe, fcc Ni,

bcc Ni, and bcc Ni1Fe26. The experimental (Expt.) values for the bcc Fe26 and fcc Ni26 are given

for comparison.

C11 C12 C44 G{100} B

bcc Fe 257 134 95 61.00 175.00

Expt. 242 136 112 53.00 171.33

fcc Ni 276 156 130 60.00 196.00

Expt. 248 155 124 46.50 186.00

bcc Ni 141 211 154 −35.00 187.67

Ni1Fe26 267 149 102 59.00 188.33

Ni1Fe15 243 127 110 58.00 165.67

TABLE III. The calculated shear modulus G (in units of GPa), Young’s modulus E (in units of

GPa), B/G, Cauchy pressure CP (in units of GPa), anisotropy factor A, and Poisson’s ratio ν of

bcc Fe, bcc Ni, fcc Ni, and bcc Ni1Fe26 and Ni1Fe15.

G E B/G CP A ν

bcc Fe 79.80 207.82 2.19 39 1.54 0.30

bcc Ni −27.18 −85.67 −6.90 57 −4.40 0.58

fcc Ni 95.32 246.07 2.06 26 2.17 0.29

Ni1Fe26 81.89 214.57 2.30 47 1.73 0.30

Ni1Fe15 85.08 217.94 1.95 17 1.90 0.28

factors A, and Poisson’s ratio ν for NixFe1−x. Note that G is bounded either by GV or GR

and, therefore, G is in an approximated average sense. It is a common practice to consider

G as an indication of mechanical properties of materials.35,36 It is known that the hardness

and strength of materials are related to their elastic moduli, such as E, B, and G.20 The

bulk modulus of bcc Fe is slightly increased by 3.7 at.% Ni. It is noticeable that both E

and G increase with Ni. On the other hand the negative values of bcc Ni demonstrate that
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TABLE IV. The calculated sound velocities (in units of km/s) and densities (in units of kg/m3) of

bcc Fe, fcc Ni, and bcc Ni1Fe26 and Ni1Fe15.

v⊥ v‖ vm ρ

bcc Fe 5.86 3.12 3.48 8190

fcc Ni 6.01 3.27 3.64 8940

Ni1Fe26 6.05 3.18 3.55 8120

Ni1Fe15 5.89 3.25 3.62 8040

this phase violates the mechanical stability condition.20 All these materials have high shear

anisotropy factor and anisotropic behavior as increasing Ni concentrations. Pettifor37 has

suggested that the Cauchy pressure could be used to describe the angular character of atomic

bonding in metals and compounds. If the bonding is more metallic, the Cauchy pressure

will be positive. It is believed that ductile materials (such as Ni or Al) have positive values

and brittle materials (such as Si) have negative values of Cauchy pressure.37 This can be

seen in Table III where NixFe1−x have positive values and are ductile, consistent with the

metallic behavior discussed below.

To further shed light on whether NixFe1−x are brittle or ductile, we used simple Pugh

relations that link empirically the plastic properties of metals with elastic moduli by B/G.38

If the B/G ratio is greater than 1.75, the material behaves in a ductile manner, otherwise

in a brittle manner, as demonstrated by first-principles calculations.37,39 It is seen that the

B/G ratio is greater than 1.75 for bcc NixFe1−x pointing that all our considered systems are

ductile as expected. The other factor that measures the stability of a crystal against shear

is Poisson’s ratio ν, and it has been shown40,41 that brittle materials have higher Poisson’s

ration such as NiAl (ν = 0.41), while the ductile materials have Poisson’s ratio ν ∼ 0.30.

Now it is clear from Table III that the Poisson’s ratios of bcc NixFe1−x are ∼ 0.30. Therefore,

bcc NixFe1−x enter into the class of ductile materials. At low temperature the vibrational

excitations arise solely from acoustic vibrations and the calculate isotropic mean velocities,

using Eq. (10), are given in Table IV.

We emphasise that the modulus ratio is just one of many indicators of the propensity

of a material to be brittle;42 crystal defects, the weakening of grain boundaries by chemical

10



TABLE V. The calculated sound velocities (in units of km/s) of bcc Fe, fcc Ni, and bcc Ni1Fe26

and Ni1Fe15 in different directions. The values of vm are calculated by using Eq. (10).

vl vt vm

[100] [110] [111] [100] [110] [111] [100] [110] [111]

bcc Fe 5.60 5.96 6.07 3.41 2.74 2.98 4.34 3.72 4.00

fcc Ni 5.56 6.22 6.43 3.81 2.59 3.05 4.66 3.57 4.13

Ni1Fe26 5.73 6.18 6.32 3.54 2.70 3.01 4.49 3.69 4.06

Ni1Fe15 5.50 6.06 6.23 3.70 2.69 3.06 4.55 3.67 4.11

segregation and many other factors can play a seminal role in determining the macroscopic

properties. We found that the calculated elastic constants are in agreement with the available

data, and the knowledge of elastic constants permits the sound velocities to be estimated as

a function of the direction. Simply using Eq. (13–15), the sound velocities of all the systems

considered here were calculated, and the velocities of bcc NixFe1−x in the [100], [110], and

[111] directions are given in Table V.

One can see that vm in the [100] direction, which is also an easy axis of magnetization

of bcc Fe, is increasing with the Ni concentrations. On the other hand, Ni concentrations

decrease vm in the [110] direction. It is clear to see that vm has larger values in the [100] di-

rection than in the [110] direction. The different values of vm in the different crystallographic

directions confirm the anisotropic behavior of bcc NixFe1−x.

Before going to discuss the Bain path, it is emphasized that the elastic constants calcula-

tions did not allow internal coordinate or stress-tensor optimization at each lattice distortion.

Since lattice distortions were small ∼ ±3%, this constraint may preserve the stable states

and the effect of atomic relaxation (in either direction, i.e., x, y, z) is found to very small.

However, we also performed some test calculations on the internal coordinate relaxations

in the distorted systems, but they were hardly distinguishable with the unrelaxed ones. It

is believed that atomic relaxation will not have much effect (qualitatively) on the elastic

properties and such relaxation will not change the main conclusions drawn in this paper.
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FIG. 2. Total energy (in eV units) as a function of c/a for (a) bcc Fe (b) Ni1Fe26, and (c) Ni1Fe15.

Filled (Open) circles represent the total energy in NM (FM) states.

C. Magnetism on the Bain deformation

Let us examine the effects of magnetism on the martensitic transformation in terms of

the Bain deformation.43 One should not be confused with the reversibility of martensitic

transformation by crystal symmetry,44 because we ignored the effects of entropy totally,

which causes the irreversible processes.45 The mechanical stability of the cubic phase under

tetragonal distortion was evaluated by calculating the total energy as a function of volume

conserving tetragonal strain at the optimized lattice parameters of bcc NixFe1−x. The total

energies in the NM and FM states as a function of c/a ratio at constant volume are presented

in Fig. 2. It is seen that in the NM states the total energy has a negative curvature around

c/a = 1.0, which is a signature of mechanical instability.20 It is further expected that the

structure instability will be accompanied by a softening of phonons.7,26,46,47 These figures

clearly show that when the cubic symmetry of the bcc phase is broken by the tetragonal

distortion in the NM state, the total energy is decreasing and indicating a phase transition to

the other phase; fcc in this case. The total energy is minimized around c/a =
√
2 (fcc phase)

and become mechanically stable. This trend can be seen in all these bcc FeNi systems.

However, the situation was drastically changed when we repeated the same calculations

in the FM states. In the FM states, these systems are mechanically stable in the bcc phases

and unstable in the fcc phases. It is possible on the basis of these observations to conclude
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that the bcc phases are stable in the FM states, and fcc phases in the NM states. The bcc-

fcc phase transition is prohibited by the magnetic contribution to the total energy. If these

systems were not magnetic, then one could expect bcc-fcc phase transitions in these bcc

FeNi systems. This further points out the role of magnetism in the phase stabilities of FeNi

systems, i.e., the bcc phases are stabilized by ferromagnetism. These findings show that

magnetism contributes to both structural and elastic stabilities of materials. Nevertheless,

magnetism can either stabilize an elastically unstable material, as discussed above, or cause

a stable structure to become elastically unstable, e.g., hcp Fe. A similar Bain transformation

path was also observed for bcc-fcc Fe where it has been shown that the local minima on the

Bain path was changed by changing the lattice volume.6,8 Therefore, the Bain path can be

altered slightly by changing the lattice volume.

It is worth to mention how our magnetic model describes the reality of alloy system.

Our comparison of the ferromagnetic and nonmagnetic solutions is simply to emphasise the

stability of the former state. The comparison should ideally be between the ferromagnetic

and paramagnetic states which we cannot easily access. Alloys differ from the corresponding

chemical compounds by introducing the concept of atomic thermal aggitation,48 which can be

interpreted as an Ising ferromagnet.49 Of a given atomic configuration at a finite temperature,

the Ni impurity modifies the the magnetic moments of neighboring Fe atoms. In addition,

Fe-Ni system is a representative itinerant ferromagnet29 described by the Stoner model.50

A natural long-range oscillations, so-called the Ruderman-Kittel-Kasuya-Yosida (RKKY)51

and Friedel52 oscillations, may occur. However, the thermal aggitation will change the

atomic configurations dynamically and it will diminish the effects of the RKKY and Friedel

oscillations, by superposition of the random phases of those oscillations. Hence, we can

expect that the averaged magnetic moments of atoms will not much differ from those of a

representative atomic configuration. Although there are good methods for simulating the

magnetic moments of disordered states,53 the problem of alloy magnetism is still open. In

addition, bcc iron matrix screens well such oscillations of the magnetic moments within the

nearest neighbor distance.11,30,33 Therefore, our model should not change the essence of the

conclusions, since the ferromagnetic state of iron and its dilute alloys is well-established to

be so much more stable than the paramagnetic state.
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c/a. Filled (Open) squares represent the DOS of Ni1Fe15 (Ni1Fe26) in the NM states.

D. Electronic structures on the Bain deformation

The observed stability/instability in fcc/bcc phase ultimately have an underlying elec-

tronic origin. The electronic structures of these bcc systems and the calculated total elec-

tronic density of states (DOS) per atom at the Fermi level (EF), denoted as n (EF), in the

NM state, are given in Fig. 3. The bcc phase, NixFe1−x has a minimum n (EF), and as

it is deformed to body-centered tetragonal (bct) then n (EF) suddenly increases and has a

maximum value around c/a = 1.08. The lowest n(EF) can be seen near c/a =
√
2. This

shows that the bcc structure is mechanically unstable due to large n (EF).

To reveal the effect of tetragonal distortion on the local DOS, the atomic projected local

DOS of Ni1Fe26 and Ni1Fe15 is shown in Fig. 4 and Fig. 5, respectively, which show the local

DOS for c/a = 1.0 and c/a =
√
2. The DOS shows metallic behavior which also follows

the Pettifor37 suggestions about the metallic character and positive values of the Cauchy

pressure. One can clearly see the reduction (∼ 50%) of n (EF) for the c/a =
√
2 cases. In

both Ni1Fe26 and Ni1Fe15, n (EF) is dominated by the eg orbitals for c/a = 1.0, however,

the t2g orbitals contribute to n (EF) for c/a =
√
2. It is also clear from these figures that

EF of cubic NixFe1−x is located on a peak of high DOS and the tetragonal distortion is
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FIG. 4. (Color online) Calculated spin-unpolarized impurity-atom-projected local density of states

of Ni1Fe26 for (a) c/a = 1.0 and (b) c/a =
√
2. Solid (dotted) lines represent the t2g (eg) states,

whereas the bold solid lines show the total DOS per atom. The Fermi energy (EF) is set to zero.

leading to a decrease of n (EF) in the tetragonal phase. The strong reduction in n (EF) is an

indicative of a states shifts from the Fermi surface, i.e., an instability associated with the

peak in n (EF). Note that in the absence and presence of distortion, the value of n (EF) for

bcc NixFe1−x is within the Stoner limit.11 In metals, in general, a lower n (EF) corresponds

to lower electronic kinetic energy. This reduction gives a substantial negative contribution

to the electronic energy and consequently the total energy decreases upon lattice distortion

as shown above, yielding a negative curvature of the shear modulus for bcc FeNi systems.

This mechanism is responsible for the elastic instability of bcc NixFe1−x in the NM states.
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FIG. 5. (Color online) Calculated spin-unpolarized impurity-atom-projected local density of states

of Ni1Fe15 for (a) c/a = 1.0 and (b) c/a =
√
2. Solid (dotted) lines represent the t2g (eg) states,

whereas the bold solid lines show the total DOS per atom. The Fermi energy (EF) is set to zero.

IV. SUMMARY

The elastic and thermodynamics of Ni impurities in bcc Fe is studied using first-principles

calculations which showed that Ni impurities do not expand the lattice constant of bcc Fe

in the nonmagnetic state, in contrast to the the ferromagnetic state. Nickel impurities

improved the elastic properties of bcc Fe. The sound velocities of elastic waves were shown

to be increasing in the [100] directions, and decreasing in the [110] directions with the Ni

concentrations. We also investigated the Bain path of bcc NixFe1−x, and it was observed that

NixFe1−x systems are elastically unstable for c/a = 1.0 in the nonmagnetic sates, whereas

NixFe1−x systems are stable for for c/a =
√
2. The elastic stability was explained in terms

of electronic structures of NixFe1−x.
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