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First-principles calculations of the electronic structure of open-shell condensed matter

systems
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We develop a Green’s function approach to quasiparticle excitations of open-shell systems within
the GW approximation. It is shown that accurate calculations of the characteristic multiplet struc-
ture require a precise knowledge of the self energy and, in particular, its poles. We achieve this by
constructing the self energy from appropriately chosen mean-field theories on a fine frequency grid.
We apply our method to a two-site Hubbard model, several molecules and the negatively charged
nitrogen-vacancy defect in diamond, and obtain good agreement with experiment and other high-
level theories.

Introduction.—In nature, there exists a wide range of
electronic systems with open shells, including most atoms
and many molecules, but also defects in crystalline solids.
These systems play important roles in almost all areas of
physics, chemistry and biology: for example, the neg-
atively charged nitrogen-vacancy (NV−) defects in dia-
mond are used for biological imaging [1, 2] and are also
promising candidates for qubits in quantum computers
[3–5].
It is therefore important to develop theoretical meth-

ods to study open-shell systems and their properties.
While for closed-shell systems a well-established set of
methods exists, ranging from wave function-based quan-
tum chemistry approaches to density-functional theory
(DFT) and Green’s function based many-body perturba-
tion theory, the accuracy of these methods when applied
to open-shell systems is less certain: Even the applica-
tion of wave function-based methods to small open-shell
molecules is far from straightforward [6] and standard
density functionals are known to break the orbital and
spin degeneracy of the ground state [7, 8].
A Green’s function approach to electron excitations in

open-shell system was first considered by Cederbaum and
coworkers [9, 10] in the 1970’s. These authors only ap-
plied the formalism to toy problems with few orbitals and
employed approximations to the self energy which are
not feasible for large systems, such as open-shell defects.
Other previous applications of Green’s function theory
to open-shell systems using the GW approximation had
either carefully selected reference states to avoid compli-
cations associated with the open-shell [11] or ignored the
degenerate ground-state problem [12, 13].
In this Letter, we extend the GW approach to open-

shell systems. Calculations on several prototypical sys-
tems are performed: a two-site Hubbard cluster, four
molecules (nitrogen dioxide, oxygen, nitrogen difluoride,
chlorine dioxide) and the NV− center in diamond. We
find our approach is capable of describing these systems
with quantitative accuracy. We have identified and im-
plemented two important elements for accurate results in
GW calculations of open-shell systems: i) a careful choice

of the mean-field starting point providing accurate self-
energy pole positions, and ii) a method for evaluating the
self energy on a fine frequency grid.
Theory.—In a photoemission experiment with photons

of energy ωphoton (setting ~ = 1), the photocurrent J(ǫk)
due to photoelectrons with momentum k and energy ǫk
is given by [14]

J(ǫk) =
∑

ij

∆ki∆jkAij(ǫk − ωphoton), (1)

where ∆ki = 〈k|∆dipole|ψi〉 and Aij(ω) =
〈ψi|A(r, r

′, ω)|ψj〉 denote matrix elements of the
dipole operator and the spectral function, respectively,
with ψi being an appropriate single-particle orbital.
Neglecting off-diagonal matrix elements for an ap-
propriately chosen physical set of orbitals, we obtain
Ajj(ω) = 1/π|ImGjj(ω)| by computing the interacting
Green’s function (here we give the electron removal
part)

Gjj(ω) =
∑

λ

|〈N − 1, λ|cj|N, 0〉|
2

ω − Eλ − iη
(2)

with Eλ = E
(N)
0 −E

(N−1)
λ . Here, |N, 0〉 and E

(N)
0 denote

the N -particle ground state and its energy, respectively,
while |N − 1, λ〉 denotes an (N − 1)-particle state (with
λ being an appropriate set of quantum numbers) with

energy E
(N−1)
λ . Also, cj is the destruction operator for

an electron in orbital j and η = 0+.
Eλ solves the quasiparticle equation

Eλ = ǫj +Σjj(Eλ)− V xc
jj , (3)

where ǫj and V xc
jj denote the orbital energy and a diago-

nal matrix element of the exchange-correlation potential
from a mean-field calculation, respectively, while Σjj(ω)
is a diagonal matrix element of the self-energy operator.
The quasiparticle equation [Eq. (3)] follows from

Dyson’s equation [15]

G−1
ij (ω) = G−1

0,ij(ω)− Σij(ω) + V xc
ij , (4)
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which relates the interacting Green’s function to the
mean-field Green’s function G0,ij(ω) via the self energy.
The standard derivation of Dyson’s equation [15] assumes
the existence a nondegenerate interacting ground state
which evolves into a nondegenerate single Slater deter-
minant state as the interactions are adiabatically turned
off. The hallmark of open-shell systems, however, is the
existence of multiple degenerate ground states which do
not generally evolve into noninteracting single Slater de-
terminant states [16]. If — for a particular ground state
— the resulting noninteracting state is a sum of Slater
determinants, one has to employ the methods of quantum
field theory with initial correlations and replace Dyson’s
equation with a more complicated expression [16, 17].
In our calculations, we avoid this difficulty by carefully
choosing a ground state which evolves into a single Slater
determinant such that Dyson’s equation is valid. In par-
ticular, we work with the ground state with the highest
magnetic quantum number because there exists a corre-
sponding single Slater determinant with the same prop-
erties (i.e., it is also an eigenstate of the total spin and/or
orbital angular momentum operator with the same eigen-
value) [10]. An approximation to this particular ground
state is provided by standard spin-polarized mean-field
calculations. We note that it is not always possible to
find a single determinant ground state. However, such a
state must exist whenever Hund’s rules apply.

In closed-shell systems, Eq. (3) typically has a single
solution leading to a pronounced quasiparticle peak in
Ajj(ω) which corresponds to the removal of an electron
from orbital j [18]. In open-shell systems, the orbital and
spin angular momenta of the electrons in the unfilled
shells can couple in various ways resulting in multiple

low-energy eigenstates of the N and the (N − 1)-particle
system. The coupling of angular momenta generally pro-
duces eigenstates which are sums ofmultiple Slater deter-
minants [19]. As a consequence, multiple eigenstates of
the (N−1)-particle system can make significant contribu-
tions to Gjj(ω) if their matrix element in the numerator
of Eq. (2) is large. Gjj(ω) then has multiple poles and we
expect to find multiple solutions of Eq. (3). This impor-
tant connection between the poles of the self energy and
the multiplet structure of open-shell systems was first
established by Cederbaum and coworkers [9, 10].

If Gjj(ω) has multiple poles, Eq. (4) shows that the self
energy Σjj(ω) must also have poles occurring between the
poles of Gjj(ω). The occurrence of poles in Σjj(ω) near
Eλ is a particular feature of open-shell systems and a
direct consequence of the electronic multiplet structure.

In actual calculations for open-shell systems, a precise
knowledge of the frequency dependence of the self energy
is necessary to locate its poles and obtain accurate mul-
tiplet splittings. In contrast, for closed-shell systems it
is usually sufficient to employ a simple linear expression
for the frequency dependence of the self energy in the
vicinity of the quasiparticle energy [18].

In this work, we employ the GW approximation to
the self energy following the first-principles method of
Hybertsen and Louie [18]. To obtain Σjj(ω) at many
frequencies, we make use of a specific form of the eval-
uation of the frequency dependence of the dielectric re-
sponse and self energy as proposed in Refs. [20] and [11].
In this approach, Σjj(ω) is separated into a frequency-

independent bare exchange part Σ
(x)
jj and a frequency-

dependent correlation part Σ
(c)
jj (ω) given by

Σ
(c)
jj (ω) =

∑

nI

|VjnI |
2

ω − ǫn − ΩIsgn(ǫn − µ)
, (5)

where µ denotes the chemical potential and ΩI is a neu-
tral excitation energy of the N -particle system obtained
by solving Casida’s equation in the random-phase ap-
proximation [20]. Also, VjnI denotes a Coulomb matrix
element between the product ψ∗

jψn and the fluctuation
charge density ρI [20] (see Supplementary Material for
details on the approach).
Equation (5) shows that the poles of Σjj(ω) are deter-

mined by the mean-field electron removal (or addition)
energies ǫn, which are the poles of G0, and by the neu-
tral excitation energies ΩI , which are the poles of the
screened interactionW0 in the random-phase approxima-
tion. Both ǫn and ΩI depend on the mean-field theory
used to compute G0 and W0, implying an analogous de-
pendence on the choice of the mean-field starting point
for the poles of Σjj(ω).
In principle, the self energy should be computed from

the interacting Green’s function G, whose poles are at
Eλ, and the exact screened interaction W [18]. For
closed-shell systems, it is possible to carry out self-
consistent GW0 calculations where the self energy is re-
computed using the iterated Green’s functions such that
Σ becomes independent of the mean-field starting point
[21]. For open-shell systems, self-consistent calculations
are more difficult because of the more complicated struc-
ture of G and additional problems to be discussed below.
To obtain accurate self-energy pole positions we instead
carefully choose mean-field theories that yield ǫn and ΩI

which are good approximations to Eλ and the poles of the
exactW , respectively. In general, one finds that the poles
ofW0 obtained from standard density-functional calcula-
tions are good approximations to neutral excitation ener-
gies. In contrast, the poles of G0 obtained from density-
functional theory often differ from the exact removal or
addition energies (i.e. the quasiparticle energies) by sev-
eral electron volts. Such an error in the poles of G0 leads
to a similar-sized error in the self energy pole locations
and to a large error in the multiplet splittings. To obtain
the best G0, we construct it from mean-field calculations
using the static COHSEX approximation [22, 23].
In addition, if the result of a calculation depends on

a particular self-energy pole we carry out partially self-
consistent calculations where we only update the partic-
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ular ǫn in Eq. (5) which determines the position of the
self-energy pole under consideration.
Molecules.— First, we study the electronic multiplet

structure of four small molecules for which accurate ex-
perimental data is available.
Nitrogen dixoide (NO2) has a doublet ground state.

We first carry out DFT calculations [24, 25] at the ex-
perimental geometry [26] using the spin-polarized LDA
exchange-correlation functional, norm-conserving pseu-
dopotentials, a plane-wave basis (50 Ry cutoff) and a
cubic supercell with linear dimension of 10.6 Å.
For the construction of W0 we use wave functions and

energies from the DFT calculation. We use 300 empty
states and a 15 Ry momentum space cutoff for the dielec-
tric response. For G0 we use wave functions and energies
from a static COHSEX calculation. Table I shows that
the COHSEX single-particle energies are much closer to
the experimental ionization potentials than the DFT en-
ergies, but the multiplet structure is still missing in this
calculation. For the calculation of the self-energy matrix
element we use 300 empty states and a modified static
remainder correction [27, 28] which extends the sum over
n in Eq. (5) to all empty states and greatly improves con-
vergence. This choice of parameters results in multiplet
splittings converged to within ∼ 0.1 eV.
Figure 1(a) shows the self energy and spectral func-

tion for the removal of a down-spin electron from the 4b2
orbital [see insert in Fig. 1(a)]. We do not expect any
multiplet structure for this process because the up-spin
hole can only couple to the up-spin electron in the 6a1
orbital to give a triplet state. Indeed, the spectral func-
tion exhibits a single peak corresponding to the triplet
(3B2) state.
Figure 1(b) shows results for the removal of an up-

spin electron from the 4b2 orbital. The down-spin hole
can now couple to the up-spin electron in the 6a1 or-
bital to yield either a singlet (1B2) or a triplet (3B2)
state. Indeed, we find two solutions of Eq. (3) resulting
in two poles of the Green’s function and two peaks in the
spectral function with a singlet-triplet splitting of 1.8 eV
which compares favorably with the experimental splitting
of 1.5 eV (Table I). In contrast, the singlet-triplet split-
ting from GLDAWLDA is 2.9 eV highlighting the impor-
tance of an accurate mean-field starting point. To make
sure that the two solutions are indeed multiplet states we
traced back the low lying self-energy pole to open-shell
features in G0 and W0: namely, to the pole in G0 due to
the unpaired up-spin 6a1 state and the pole in W0 due to
the 4b2↓ → 6b1↓ transition between the two open shells.
Hund’s rule suggests that the lower energy solution is the
triplet state.
Inspection of Table I shows that we obtain two values

for the energy of the triplet state 3B2, one from the re-
moval of an up-spin electron from the 4b2 orbital, one
from the removal of a down-spin electron from the same
orbital. These values differ by 0.8 eV and bracket the ex-

TABLE I: Comparison of our results for NO2 with experiment
[26]. All energies are given in eV.

orbital DFT COHSEX GLDAWLDA GW exp. state

6a1(↑) -6.6 -12.0 -10.7 -11.2 -11.2 1A1

4b2(↓) -8.7 -14.1 -12.5 -12.8 -13.0 3B2

4b2(↑) -9.3 -14.9 -10.5 -13.6 -13.0 3B2

4b2(↑) -9.3 -14.9 -13.4 -15.4 -14.5 1B2
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FIG. 1: Self energy Σjj(ω) and spectral function Ajj(ω) for
(a) the removal of a down-spin electron from the j = 4b2
orbital in NO2 and (b) the removal of an up-spin electron
from the j = 4b2 orbital. A Lorentzian broadening of 20 meV
is used for each curve.

perimental result. There are two factors which contribute
to this discrepancy: i) remaining errors in the positions of
the self-energy poles which contaminate only solutions of
the up-spin quasiparticle equation and ii) missing vertex
corrections which contaminate solutions of the up- and
down-spin quasiparticle equations in different amounts
[29]. We expect that the inclusion of vertex corrections
will reduce the difference. Nevertheless, as shown above,
accurate multiplet splittings can be extracted from our
calculations if the energy differences are calculated from
solutions of the quasiparticle equation for a particular

spin direction.
The ratio of the areas under the singlet and the triplet

peaks in Fig. 1(b) should be the experimentally observed



4

TABLE II: Comparison of our results for O2, NF2 and ClO2

with experiment [31–33]. All energies are given in eV.

orbital state GLDAWLDA GW exp.

O2 1πg
2Πg 12.1 12.4 12.3

O2 3σg
4Σ−

g 15.4 19.2 18.4
O2 3σg

2Σ−

g 19.5 21.6 20.7
NF2 2b1

1A1 11.6 12.0 12.1
NF2 6a1

3B1 11.9 15.0 14.6
NF2 6a1

1B1 14.7 17.3 16.4
ClO2 3b1

1A1 10.2 10.6 10.5
ClO2 1a2

3B1 10.5 13.3 13.0
ClO2 1a2

1B1 13.5 15.8 15.4

ratio of photoemission intensities, the so-called multiplet
ratio [30]. We find in our calculations that the multi-
plet ratios are much more sensitive to the positions of
the self-energy poles than the multiplet splittings. We
do not expect that these ratios can be computed reliably
with our current GW approach because of the remaining
uncertainties in the self-energy pole locations. However,
Schirmer and coworkers found a relatively simple analyt-
ical procedure for calculating these ratios based on the
addition of angular momenta [30]. We expect that the
combination of their approach for the multiplet ratios
and the GW approach for the multiplet splittings offers
a reliable and complete description of the multiplet struc-
ture of open-shell systems.

Table II shows our results for the oxygen (O2), ni-
trogen difluoride (NF2) and the chlorine dioxide (ClO2)
molecules. The GW multiplet splittings are 2.4 eV for
O2, 2.3 eV for NF2 and 2.5 eV for ClO2. They compare
favorably with experimental splittings: 2.3 eV for O2,
1.8 eV for NF2 and 2.4 eV for ClO2 [31–33]. However,
splittings obtained from GLDAWLDA can deviate from
experimental findings by several electron volts.

Hubbard cluster.— To further establish the accuracy of
our method, we apply it to an analytically solvable model
system: a two-site Hubbard cluster containing three elec-
trons with a Hilbert space spanned by four spin-orbitals.
We denote the hopping parameter t and the on-site in-
teraction U . This system has a doublet ground state.
We compute the mean-field wavefunctions and energies
using the spin-polarized Hartree-Fock method and then
evaluate the self energy corresponding to the removal of
an up-spin electron from the doubly occupied bonding
orbital. We find two solutions of the quasiparticle equa-
tion due to the occurence of a pole in the self energy:
their separation is 1.1U for U/t < 1 where we expect the
GW approximation to give accurate results.

In this model system, analytical evaluation of the
Hamiltonian for the three and two particle systems al-
lows for the calculation of the exact many-body Green’s
function which agrees well with the GW result: it has
two poles corresponding to a singlet and a triplet state
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FIG. 2: Self energy Σjj(ω) and spectral function Ajj(ω) for
the removal of an up-spin electron from the j = ν orbital. A
Lorentzian broadening of 5 meV is used for each curve.

TABLE III: Comparison of the calculated multiplet splittings
for the NV− defect in diamond with results from exact diag-
onalization calculations on the extended Hubbard model[35].
All energies are given in eV.

splitting GW Ref. [35]
E(2E) − E(2A2)

2.0 1.8
E(4A2)

−E(2A2)
0.9 0.9

of the two particle system separated by U .

NV− center.— Next, we apply our approach to the
NV− center in diamond which has a triplet ground state.
This defect complex currently attracts much attention
because of its extraordinary properties, such as long co-
herence times and potential application to quantum com-
puting [3–5].

Again, we carry out DFT calculations as described in
the previous sections. We employ a 64-atom supercell
and relax all ionic positions. As a test, we first carry out
GW calculations with a generalized plasmon pole model
[34] and find good agreement with the similarly calcu-
lated results of Ma and Rohlfing [12], who use a 256-
atom supercell, for the energy differences of the defect
levels in the gap. This indicates that our supercell size is
sufficient to extract accurate multiplet splittings for the
defect levels using the current method.

For the NV− center we find that the DFT orbital ener-
gies are much closer to the static COHSEX results than
in NO2, and we can use the DFT energies and wave func-
tions both for the construction of W0 and G0. We use
300 empty orbitals and a 12 Ry momentum space cut-
off for W0 and 300 empty orbitals in conjunction with a
modified remainder correction for the self-energy matrix
elements. This choice of parameters results in multiplet
splittings converged to within ∼ 0.1 eV.

Figure 2 shows results for the removal of an up-spin

electron from the ν level. As in the NO2 calculation, the
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self energy exhibits a low-lying pole leading to two solu-
tions of the quasiparticle equation. To understand which
many-body states these solutions correspond to, we com-
pare our results to exact diagonalization calculations of
the extended Hubbard model of Choi, Jain and Louie[35].
These authors fit the parameters of an extended Hubbard
model for the defect levels to ab initio static COHSEX
results and show that this model describes accurately
neutral excitations. The model predicts four many-body
states Ψλ for the ν1e2 configuration. However, only two

of the four states, namely 4A2 and 2A2, are observed in
our calculations because by symmetry only these states
have a non-vanishing matrix element 〈Ψλ|cν↑|ν↑ν↓ex↑ey↑〉
with the ground state. Table III shows that we obtain
good agreement with the extended Hubbard model re-
sults for the multiplet splittings. Note that the 4A2-

2A2

splitting in Fig. 2 corresponds to the last row in Table III.
The first row in Table III shows the splitting between the
2E state obtained by removing an up-spin electron from
the e defect orbital and the 2A2 state. Again, we find
good agreement with the extended Hubbard model re-
sults.
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