腐蚀科学与防护技术

Corrosion Science and Protection Techonology

用户名 [」密码		₹ 注册 遗忘密	答码? FAQ
论文快速检索:		检索	高级检索	

首而

期刊介绍 🐷

编委介绍

设稿须知

读者服务 🕶

妾

4. 玄我们

论文

微尺度Ni 悬臂梁试样的腐蚀和疲劳性能

张强^{1、2},郭兴蓬^{1、2}

1 华中科技大学 化学系,武汉 430074 2 材料化学与服役失效湖北省重点实验室,武汉 430074 摘要:

采用飞秒激光器制备了纯Ni 微悬臂梁试样,研究了它的腐蚀与腐蚀疲劳性能.结果表明,宏试样表面出现明显的局部腐蚀特征,微试样表面主要表现为全面腐蚀特征;载荷幅和介质中Cl⁻的含量对试样的疲劳寿命有显著的影响;试样在疲劳断裂前的最大载荷逐渐降低.

关键词:

CORROSION AND FATIGUE BEHAVIOR OF MICRO-SIZED NI CANTILEVER BEAMS

ZHANG Qiang^{1, 2}, GUO Xing-peng^{1, 2}

- 1 Chemistry Department, Huazhong University of Science and Technology, Wuhan 430074
- 2 Key Laboratory of Materials Chemistry and Service Failure of Hubei Province, Wuhan 430074 Abstract:

Micro-sized Ni cantilever beams with dimensions of 50 μ m \times 50 μ m \times 80 μ m(h \times W \times L) were fabricated by femtosecond laser processing. Static corrosion and corrosion fatigue tests were carried out on the micro-sized Ni cantilever beams. The results indicate that the micro-sized specimens exhibit general corrosion behavior on the surface of specimens, on the contrary, localized corrosion behavior on the surface of ordinary sized plates. The fatigue lifes of micro-sized specimens were significantly influenced by load amplitudes and Cl-contents in the corrosive solution, and the maximum bending loads for the micro-sized Ni specimens decreased gradually prior to final fracture.

Keywords: cantilever beam corrosion fatigue nickel micro-system

收稿日期 2007-04-02 修回日期 2007-07-10 网络版发布日期 2009-06-08

DOI:

基金项目:

通讯作者: 张强 Email:whzhang0077@163.com

作者简介: 张强(1976-), 男, 博士研究生, 研究方向为微系统腐蚀与控制.

参考文献:

- [1] C W Beak, Y K Kim, Y Ahn, et al. Measurement of the mechanical properties of electroplated gold thin films using micromachined beam structures [J]. Sens Actuators A, 2005, 117(1):17.
- [2] T Du, A vijayakumar, K B Sundaram, et al. Chemical mechanical polishing of Nickel for application in MFMS devices [1] Microelectron Eng 2004 75 (2):234
- in MEMS devices [J]. Microelectron Eng, 2004, 75 (2):234. [3] 张强,郭兴蓬. 304不锈钢微尺度试样的腐蚀疲劳性能 [J]. 中国腐蚀与防护学报, 2008, 28(2):99.
- [4] J Xie, A T Alpas, D Northwood. The role of heat treatment on the erosion corrosion behavior of AISI 52100 steel [J]. Mater Character, 2002, 48 (1-2):273.
- [5] V N Myunga, D Y Parkb, B Y Yoob, et al. Development of electroplated magnetic materials for MEMS [J]. J Magnetism Magnetic Mater, 2003, 265:189.
- [6] K Genel, M Demirkol, T Gulmez. Corrosion fatigue behavior of ion nitrided AISI 4140 steel [J]. Mater Sci Eng A, 2000, 288(1):93.
- [J]. Mater Sci Eng A, 2000, 288(1):93.
 [7] Z Wang, J Li, J Wang. The influence of loading waveform on corrosion fatigue crack propagation [J]. Corros Sci, 1995, 37(10):1552.
- [8] X Li, B Bhushan, K Takashima. Mechanical characterization of micro/ nanoscale structures for MEMS/NEMS applications using nanoindentation techniques [J]. Ultramicroscopy, 2003, 97 (1-4):485.
- [9] W Merlijn, V Spengen. MEMS reliability from a failure mechanisms perspective
- [J] . Microelectronics Reliability, 2003, 43(7):1052.
- [10] X Li, B Bhushan. A review of nanoindentation continuous stiffness measurement technique and its applications [J]. Mater Character, 2002, 48(1):11.
- [11] N Wang, Z Wang, K T Aust, et al. Room temperature creep behavior of nanocrystalline nickel produced by an electroplating technique [J]. Mater Sci Eng, 1997, 237(2):156. 本刊中的类似文章

扩展功能

本文信息

Supporting info

PDF<u>(1417KB)</u>

[HTML全文]

参考文献

服务与反馈

把本文推荐给朋友 加入我的书架 加入引用管理器

引用本文

Email Alert

文章反馈

浏览反馈信息

本文关键词相关文章
木文作者相关文章

▶张强

▶ 郭兴蓬

PubMed

Article by Zhang, J. Article by Guo, X. P.

文章评论

反馈人		邮箱地址		
反馈标题		验证码	6240	
			<u>.</u>	
Copyright 2008 by 腐f	独科学与防护技术			