

Chapter IX Composite Materials § 9-1 Introduction

9.1.1 The classification of composite materials

Schematic of structure of composite materials

a) laminated composite b) and d) fiber-reinforced composite c) particle-reinforced composite

增强体				无 机 非	金属		有机材料				
		五商	陶瓷	玻璃	水泥	碳	木材	塑料	橡胶		
金	ž 属	金属基 复合材料	陶瓷基 复合材料	金属网 嵌玻璃	钢筋水 泥	无	无	无 金属丝增 金属丝 强塑料 橡肌			
无	陶瓷 {纤维 粒料	金属基 超硬合金	增强陶瓷	陶瓷增 强 玻 璃	増强水 泥	无	无	陶瓷纤维 增强塑料	陶瓷纤维; 强塑料		
īn 非 金 属	碳素 { 纤维	碳纤维 增强金属	增强陶瓷	陶瓷增 强玻 璃	増强水 泥	碳纤增 强碳复 合材料	无	碳纤维增 强塑料	碳纤、碳黑 强橡胶		
	陶瓷 { 纤维	无	无	无	増强水 泥	无	无	玻璃纤维 增强塑料	玻璃纤维: 强橡胶		
	木材	无	无	无	水泥木 丝板	无	无	纤维板	无		
有 机 材	高聚物纤维	无	无	无	増强水 泥	无	塑料 合板	高聚物纤 维增强塑 料	高聚物纤; 增强橡服		
朴	橡胶胶粒	无	无	无	无	无	橡胶合板	高聚物合金	高聚物合		

THE END

9.1.2 The property feature of composite materials

1. High specific strength and specific modulus

表 9-2 金属材料与纤维增强复合材料性能比较

	密度	抗拉强度	拉伸模量	比强度	比模量
材料	/g•cm ⁻³	/10 ³ MPa	/10 ⁵ MPa	/10 ⁶ N·m·kg ⁻¹	$/10^{6}$ N • m • kg ⁻¹
钢	7.8	1.03	2.1	0.13	27
铝	2.8	0.47	0.75	0.17	27
钛	4.5	0.96	1.14	0.21	25
玻璃钢	2.0	1.06	0.4	0.53	20
高强度碳纤维-环氧	1.45	1.5	1.4	1.03	97
高模量碳纤维-环氧	1.6	1.07	2.4	0.67	150
硼纤维−环氧	2.1	1.38	2.1	0.66	100
有机纤维 PRD-环氧	1.4	1.4	0.8	1.0	57
SiC 纤维-环氧	2.2	1.09	1.02	0.5	46
硼纤维—铝	2.65	1.0	2.0	0.38	75

THE END

西安灵道大学 材料科学与工程学院

THE END

A plate spring and a boat made from composite materials

MSE

The application of composite materials in plane

THE END

西安灵道大學 材料科学与工程学院

2. Good fatigue resistance and fracture safety property

The comparison of fatigue strength among the three kinds of materials

- 3. Nice high-temperature property
- 4. Fine damping property

THE END

§ 9-2 Reinforcer and reinforcing mechanisms

9.2.1 The reinforcers

1. The fiber reinforcers

	密度	抗拉强度	拉伸模量	比强度	比模量			
材料	/g·cm ⁻³	/10 ³ MPa	/10⁵MPa	/10 ⁶ N·m·kg ⁻¹	/10 ⁶ N • m • kg ⁻¹			
无碱玻璃纤维	2.55	3.40	0.71	1.33	28			
高强度纤维(Ⅱ型)	1.74	2.42	2.16	1.39	124			
高强度纤维(I 型)	2.00	2.23	3.75	1.12	188			
Kevlar49	1.44	2.80	1.26	1.94	88			
硼纤维	2.36	2.75	3.82	1.17	162			
SiC 纤维(钨芯)	2.69	3.43	4.80	1.28	178			
钢丝	7.74	4.20	2.00	0.54	26			
钨丝	19.40	4.10	4.10	0.21	21			
钼丝	10.20	2.20	3.60	0.22	35			

表 9-3 常用增强纤维与金属性能对比

THE END

2. The particle reinforcers

表 9-4 常用颗粒增强物的性能									
晒 船 夕 步	密座/ ³	熔点	热膨胀系	热导率	硬度	抗弯强	弹性模		
积化了口小小	峦/文/ g·cill	/°C	数/10-6.℃-1	/W· (m·K) -1	硬度 抗弯强 1 /GPa 度/MPa	量/GPa			
理化tt (C:C)	2 01	2700	4.0	75.21	26.5	$400\sim$			
恢化症(SIC)	5.21	(分解)	4.0	75.51	20.5	500			
型化硼 (D C)	2.52	2450	5.73		29.4	300~	360~		
恢化咖 (B ₄ C)						500	460		
碳化钛 (TiC)	4.29	3300	7.4		25.5	500			
氧化铝 (Al ₂ O ₃)		2050	9.0						
		2100		10.55 00.00	10.0	000	220		
氮化τ (S13N4)	3.2~3.35	(分解)	2.5~3.2	12.55~29.29	19.0	900	550		
莫来石 (3Al ₂ O ₃ •2SiO ₂)	3.17	1850	4.2		31.9	\sim 1200			
硼化钛 (TiB2)	4.5	2980							
			·			·			

THE END

9.2.2 The brief introduction of reinforcing mechanism1. Fiber reinforcing

Cracks in the fractured fibers propagating along interface between fiber and matrix The fractured fibers being drawn out the matrix

2. Particle reinforcing reinforcing

THE END

西安灵道大學 材料科学与工程学院

§ 9-3 The common composite materials 9.3.1 The plastic-matrix composite materials

表 9-5 几种热塑性玻璃钢的性能									
性能基本材料	密度 /g·cm ⁻³	抗拉强度 /MPa	弯曲弹性模量 /10 ² MPa	热膨胀系数 /10 ^{-5.} ℃ ⁻¹					
尼龙 66	1.37	182	91	3.24					
ABS	1.28	101.5	77	2.88					
聚苯乙烯	1.28	94.5	91	3.42					
聚碳酸酯	1.43	129.5	84	2.34					
	表 9-6	几种热固性玻璃钢	的性能						
性能	表 9-6 密度	几种热固性玻璃钢 抗拉强度	的性能 抗压强度	抗弯强度					
性能 基本材料	表 9-6 密度 /g·cm ⁻³	几种热固性玻璃钢 抗拉强度 /MPa	的性能 抗压强度 /10 ² MPa	抗弯强度 /MPa					
性能 基本材料 聚酯	表 9-6 密度 /g·cm ⁻³ 1.7~1.9	几种热固性玻璃钢 抗拉强度 /MPa 180~350	的性能 抗压强度 /10 ² MPa 210~250	抗弯强度 /MPa 210~350					
性能 基本材料 聚酯 环氧	表 9-6 密度 /g·cm ⁻³ 1.7~1.9 1.8~2.0	几种热固性玻璃钢 抗拉强度 /MPa 180~350 70.3~298.5	的性能 抗压强度 /10 ² MPa 210~250 180~300	抗弯强度 /MPa 210~350 70.3~470					
性能 基本材料 聚酯 环氧 酚醛	表 9-6 密度 /g·cm ⁻³ 1.7~1.9 1.8~2.0 1.6~1.85	几种热固性玻璃钢 抗拉强度 /MPa 180~350 70.3~298.5 70~280	的性能 抗压强度 /10 ² MPa 210~250 180~300 100~270	抗弯强度 /MPa 210~350 70.3~470 270~1100					

THE END

西安灵道大学 材料科学与工程学院

Canbon Reinforced Composite

Spring-Weigh about 60%

than Steel That

9.3.2 The metal-matrix composite materials

Aplastic-metal three-layer composite material 1—plastic layer 2—porosity bronze interlayer 3—steel-based

THE END

9.3.4 The ceramics-matrix composite materials

表 9-8 陶瓷经碳化硅纤维增强前后的性能比较								
材料	抗弯强度 /MPa	断裂韧度 /MPa·m ^{1/2}		材料	抗弯强度 /MPa	断裂韧度 /MPa·m ^{1/2}		
Al ₂ O ₃	550	5.5		玻璃-陶瓷	200	2.0		
Al ₂ O ₃ /SiC	790	8.8		玻璃-陶瓷/SiC	830	17.6		
SiC	495	4.4		Si ₃ N ₄ (热压)	470	4.4		
SiC/ SiC	750	25.0		Si ₃ N ₄ /SiC	800	56.0		
ZrO	250	5.0		玻璃	62	1.1		
ZrO/ SiC	450	22		玻璃/ SiC	825	17.6		

表 9-9 莫来石-ZrO2复合材料性能

任日	地工成法	m-ZrO ₂	$\sigma_{f'}$ l	мРа	$K_{IC} / (MPa \cdot m^{1/2})$				
作首	恐压宛纪	$\phi_{ZrO_2} (\ \texttt{\%})$	室温	800°C	室温	800°C			
甘 本乙 ^①	1650℃	0	236	274	K _{IC} /(M) 室温 2.5 5.1	3.1			
<u> </u>	60min	0	230	274					
有 入枷 ^②	1480℃	88.1	612	440	5.1	4.4			
及口彻	80min	00.1	012	440	5.1	4.4			
① 莫求	① 莫来石: Al/Si =68/32(质量比)								

② ZrO₂: (Y₂O₃-ZrO₂): 莫来石=25:25:50(体积比)