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1 Introduction

Biofilms play an important role in the health sector, in bioanalytics, in the food industry

and in engineering science [24] because the adsorption of organic molecules can alter

the physical, biological and chemical properties of a surface. This work deals with the

formation of biofilms on dental implant materials.

When a dental implant is placed in the oral cavity, within seconds its surface is covered

by a biofilm called pellicle consisting mainly of proteins and other macromolecules [15].

Since the adsorption of proteins is a highly selective process, the proportions of proteins

found in the pellicle differ significantly from the ones found in saliva [36]. The pellicle

is of great physiological importance because it serves as lubricant, as diffusion barrier to

demineralising agents and as reservoir for remineralising electrolytes [15]. Furthermore,

proteins in the pellicle play an important role in the colonisation of the surface by bacteria

and thus in the formation of dental plaque. On the one hand there are proteins, like

amylase, that exhibit specific binding sites for bacterial adsorption [13]. On the other

hand enzymes, like lysozyme, immobilized in the pellicle have anti-bacterial properties

[14]. Since the adsorption process of proteins is a subject not yet fully understood, this

work shall further investigate the adsorption of the proteins amylase, lysozyme and serum

albumin on two experimental dental implant materials.

The chosen method is Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS)

because it offers the following advantages [2]: The mass distribution of molecules ad-

sorbed on a sample’s surface can be measured with a high mass resolution and a high

surface sensitivity. It is possible to create depth profiles with a depth resolution of below

one nanometre. And the analysis of non-conducting samples is possible without further

preparation steps. ToF-SIMS has already been used to analyse adsorbed protein films

on different substrates (see section 2) but up to now there are no ToF-SIMS studies of

protein films on dental implant materials.

The difficulty in interpreting mass spectra of proteins is their complexity [10]. Ev-

ery protein consists of a combination of the same twenty amino acids which dissociate

within the ToF-SIMS analysis to numerous fragments. Hence one has to take into account

the intensities of many different masses for analysis. To reduce the number of variables

(i.e. masses), Principal Component Analysis (PCA) is used. This multivariate tech-

nique concentrates the variance of the spectra onto only a few variables, called Principal

Components (PC).

This work is subdivided into the following sections: In this first section an introduction

to the subject is given. The second section deals with previous work on the analysis of

adsorbed protein films by ToF-SIMS and multivariate data analysis. Theoretical aspects

of the examined systems and the applied techniques are detailed in the third section. The

experiments are described in the fourth section. The fifth section contains the following

results: First, mass spectra of dental implant materials are examined to determine their

elemental surface composition. Then mass spectra of proteins adsorbed to silane coated

silicon substrates are analysed to develop the methods and programmes necessary for

distinguishing different proteins by their mass spectra. Since this does not work very well,

the examined system is simplified to proteins adsorbed directly to silicon substrates. Here

the different proteins can be recognized by their mass spectra and the developed statistical
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models perform well in evaluation tests. The adsorption conditions are varied to obtain

the best results. Additionally the mutual influences of two proteins adsorbed at the same

time or consecutively to the same silicon substrate are studied. The results obtained

are confirmed by enzymatic activity measurements. Finally the mass spectra of proteins

adsorbed to dental implant materials are examined. With only little modifications in data

pre-treatment, the programmes developed to analyse the spectra of proteins on silicon can

be used to distinguish between different proteins adsorbed to dental implant materials.

Again, information on the mutual influence of the proteins upon adsorption is obtained.

The sixth section gives a summary and an outlook on possible future investigations.
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2 Previous work on protein analysis by ToF-SIMS

In this section a brief overview of the literature available on multivariate analysis (MVA)

of time-of-flight secondary ion mass spectra (ToF-SIMS) of adsorbed protein films is given.

In 2001 Wagner and Castner published their article “Characterization of Adsorbed

Protein Films by Time-of-Flight Secondary Ion Mass Spectrometry with Principal Com-

ponent Analysis” [31]. For analysis of single component protein films of various proteins

adsorbed to poly(tetrafluorethylene) (PTFE), mica or silicon substrates with principal

component analysis (PCA), several peaks of the mass spectra of positively charged ions

were selected. The selection was based upon the work of Mantus and others [22] who had

developed a spectral interpretation protocol for protein spectra based on strong peaks

in the spectra of amino acid homopolymers adsorbed to glass substrates. Wagner and

Castner were able to distinguish between several proteins by their scores on the first two

principle components. Furthermore, the PCA model developed with the mass spectra

of single component protein films allowed qualitative insight into the composition of a

complex adsorbed protein film from bovine plasma.

In another article [32] published in 2002, Wagner and others described their attempt

to quantitatively characterise multicomponent adsorbed protein films by ToF-SIMS. As

before, only peaks related to amino acid fragments were selected from the mass spectra of

positively charged ions for analysis. For binary protein films composed of fibrinogen and

immunglobulin G adsorbed on mica or PTFE, a good agreement between surface con-

centrations predicted from the mass spectra by a partial least squares regression (PLSR)

model and radio labelling experiments was observed. PLSR is a method of multivariate

analysis closely related to PCA. It is described for example in [8]. For ternary films com-

posed of fibrinogen, immunglobulin G and bovine serum albumin, only major trends in

the surface composition could be traced by a PLSR model. As in the preceding article,

qualitative information about the composition of complex protein films adsorbed from

bovine serum or bovine plasma was obtained with a PCA model developed with the mass

spectra of single component adsorbed protein films.

Still in 2002, Wagner and others compared the interpretation of static ToF-SIMS mass

spectra of adsorbed protein films on mica or PTFE by different methods of multivariate

pattern recognition [33]. The unsupervised technique PCA and the two supervised tech-

niques discriminant principal component analysis (DPCA) and linear discriminant anal-

ysis (LDA) were used. An improved discrimination between the mass spectra of different

proteins was observed when comparing the supervised techniques to the unsupervised one.

Furthermore, Wagner and others introduced a method to classify unknown spectra to the

previously examined proteins using a PCA model developed by the mass spectra of these

proteins. A successful classification was possible using PCA but it could be improved by

the use of DPCA and especially LDA. Yet the very good classification results of LDA

went along with a high risk of spurious discrimination.

In their article “Classification of adsorbed protein static ToF-SIMS spectra by princi-

pal component analysis and neural networks” [26], Sanni and others compared the per-

formance of PCA and the artificial neural network (ANN) “NeuroSpectraNet” applied

to the mass spectra of proteins adsorbed to silicon substrates. An introduction to neu-

ral networks is given for example by Kriesel [19]. Sanni and others concluded that a
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discrimination of different proteins using PCA with peak selection was possible but the

classification of unknown spectra to the known proteins was difficult due to numerous

outliers. On the other hand “NeuroSpectraNet” allowed a full classification of unknown

spectra using the complete mass spectra of positively and negatively charged ions. Ac-

cording to the authors the major drawbacks of neural networks lie in the complexity of

their algorithms and of data interpretation.

Xia and Castner published the article “Preserving the structure of adsorbed protein

films for time-of-flight secondary ion mass spectrometry analysis” [35] in 2003. They

wanted to preserve the structure of fibrinogen layers on gold coated silicon substrates

upon dehydration. The samples were fixated with trehalose or glutardialdehyde and

ToF-SIMS spectra of positively charged ions were analysed with PCA. It was found that

unfolding and exposure of hydrophobic domains induced by drying could be prevented by

both methods.

In 2003 Belu and others published a review on techniques and applications for charac-

terisation of biomaterial surfaces by ToF-SIMS [2]. They discuss the ToF-SIMS technique

with regard to biomaterial samples and give examples of applications and data interpre-

tation.

Michel and Castner reviewed the “Advances in time-of-flight secondary ion mass spec-

trometry analysis of protein films” [23] in 2006. The article deals mainly with characteri-

sation and classification as well as conformation and orientation of proteins, quantitative

studies, spatial distribution of proteins, cluster ion sources and matrix-assisted desorption

techniques.

Also in 2006 Graham and others gave an overview of current techniques and future

needs in ToF-SIMS data interpretation by multivariate analysis in the article “Information

from complexity: Challenges of ToF-SIMS data interpretation” [10].
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3 Theoretical aspects

3.1 Formation of biological films in the oral cavity

3.1.1 Saliva

In the oral cavity, saliva fulfils the following tasks:

• The regeneration of dental enamel is enabled by ions solved in the saliva.

• Enzymes like amylase allow the pre-digestion of food.

• The oral cavity is cleaned by removal of nutrition residues.

• Saliva buffers acids either supplied by food or produced by bacteria.

• Mucines form a lubricating film on the tooth surfaces to reduce the mutual abrasion.

Human saliva consists to over 99 % of water. The residue is composed to two thirds

by organic and to one third by inorganic compounds [27]. The most abundant inorganic

materials are the anions hydrogen carbonate, chloride and phosphates as well as the

cations of potassium, sodium and calcium. A large amount of the organic material is

formed by proteins. The most frequent of these are albumin, amylase and lysozyme [27].

These proteins analysed in this work are described in detail in section 3.2.

3.1.2 Acquired enamel pellicle

On the surface of teeth as well as dental implants, proteins and other macromolecules

are selectively adsorbed to form a film called pellicle. Salivary proteins form an initial

layer of 10 to 20 nanometres thickness within a couple of minutes [15]. According to

the work of Hannig and Joiner [15], the adsorption is governed by ionic interactions

between the proteins’ charged groups and calcium and phosphate ions of the enamel

surface assisted by van der Waals interactions. In a second phase, proteins and protein

aggregates are continuously adsorbed from the saliva. Its thickness reaches a plateau after

30 to 90 minutes and increases further within 60 minutes to reach 100 to 1 000 nanometres.

Afterwards the pellicle attains a dynamic equilibrium of adsorption and desorption.

The major salivary components of in-vivo formed pellicle are proteins and glycopro-

teins [15]. Their proportions are not the same as in whole saliva indicating that the

adsorption is a selective process [36]. The three proteins albumin, amylase and lysozyme

studied in this work are abundantly found in pellicle.

The main functions of pellicle formed on enamel surfaces are:

• Lubrification of the tooth surface.

• Formation of a diffusion barrier for acidic agents to protect the enamel from erosion.

• Inhibition of mineral precipitation from the tooth surface.

• Modulation of bacterial adherence onto the surface.



3 THEORETICAL ASPECTS 8

Proteins in the pellicle can influence the adhesion of bacteria in different ways. Some of

them, like amylase, offer specific binding sites for bacteria [13] while others, like lysozyme,

can decompose bacteria by enzymatic processes [14].

Bacteria and other micro-organisms colonise the pellicle and form dental plaque which

is clearly distinguished from pellicle [15]. It is a whitish layer difficult to wipe off the dental

surface and it can lead to caries and gingivitis. By formation of phosphate crystals the

plaque can mineralise to form dental calculus [27].

3.2 Proteins

Proteins are the most complex known molecules. Due to their manifold structure they

can fulfil various tasks. They serve the immune system as antibodies, they transport

and store metabolic materials (as haemoglobin does), they allow signal transmission as

hormones, they catalyse metabolic reactions in form of enzymes, they form supporting

structures (e.g. collagen) and allow the movement of muscles (actin and myosin). An

introduction to function and structure of proteins can be found for example in the book

by Light [21] and in the diploma thesis of Schmitt [27] which have served as main sources

for this section.

Every protein is composed of a combination of the twenty proteinogenic amino acids.

An amino acid consists of a carboxylic acid (−COOH) with an amino group (−NH2), which

is usually bound to the α carbon atom of the carboxylic acid, and a side chain bound

to the same carbon atom. Different amino acids are discriminated by the composition of

their side chain which will be denoted R in the following. The structures of the amino

acid residues as they are found in proteins are shown in figure 1.

The carboxylic group of one amino acid can react with the amino group of another

by dissection of water. Thereby an amide bond (O = C− NH) is created between the

two amino acids (see figure 2). A protein is a chain of many amino acids linked by

amide bonds. It is unambiguously determined by its amino acid sequence called primary

structure.

Each amide bond contains a partially negatively charged group (CO) and a partially

positively charged one (NH). This favours the building of hydrogen bonds (C = O · · ·H− N)

which stabilise the polypeptide chain in certain conformations. The most common of these

secondary structures are the α helix and the β sheet.

In an α helix the polypeptide chain winds around a central axis with 3.6 amino acid

residues per turn and a translational distance along the axis of 5.4 Ångströms per turn

[21] (see figure 3). This way every carbonyl oxygen is hydrogen bonded to the amide

hydrogen of the fourth peptide further along the chain. The side chains of the amino acid

residues mostly point away from the helical axis.

In a β sheet some polypeptide chains are closely aligned side by side. To allow the

maximum number of hydrogen bonds between the chains, these have to be shorter than a

fully extended chain resulting in a conformation that resembles a pleated sheet (see figure

3). The side chains of the amino acid residues are located alternately above or below the

plane of the sheet. Regions of the polypeptide chain showing an extended form without

of one of the secondary structures are called random coil regions.

The overall spatial structure (tertiary structure) of a protein is built by interactions
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Figure 1: Structures, names and abbreviations of the amino acid residues found in proteins

grouped by the properties of their side chains [21]

Figure 2: Formation of an amide bond: (1) = carboxylic group; (2) = amino group; (3)

= amide bond [27]
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Figure 3: Models of an α helix (left) and a β sheet (right) (modified from [21])

between the side chains of amino acid residues. These can be salt bridges, hydrogen bonds,

van der Waals interactions or disulfide bonds (S− S). The tertiary structure is vital for

the functioning of a protein. If this conformation is changed for example by dehydration

or changes in temperature or pH, the protein usually can not fulfil its tasks any more.

One speaks of a denatured protein in this case.

A protein contains acidic as well as basic amino acid residues that are partly dissociated

depending on the pH of the surrounding medium. The dissociation processes create

electrically charged residues. Since the numbers of positive and negative charges are

usually not equal, the protein carries a non zero net charge. Anyway, there exists for a

given protein a pH at which its net electrical charge is zero. This pH is called the proteins

isoelectric point (pI).

3.2.1 Serum albumin

Serum albumin is the most abundant plasma protein in human blood. It accounts for

roughly 60% of the protein mass in the plasma [27]. Its major task is to maintain the

colloidal osmotic pressure. Since the concentration of albumin in the blood vessels is

higher than in the surrounding tissue, a leakage of water from the vessel is prevented by

the osmotic pressure. Furthermore, albumin serves as a transport molecule and buffers

the pH-value [6]. Besides in the blood plasma, serum albumin can also be found in the

skin, in muscles, in the saliva and in the cerebrospinal fluid.

In this work bovine serum albumin (BSA) is used because its amino acid sequence is

to 76% identical to the one of human serum albumin (HSA) and it is significantly cheaper

[27].

BSA consists of 607 amino acids and has a molecular weight of 69 kg/mol [1]. In
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Figure 4: Models of different conformations of BSA. α helices are represented by helices

and random coil regions by cords [6]

physiological conditions it shows a heart-shaped tertiary structure called normal form (N

form) with a size of roughly 11 nm by 8 nm by 8 nm [1]. Its isoelectric point is at pH

4.7 [36]. Dependent of the pH-value the shape of BSA is reversibly changed. Above pH 8

one finds the basic form (B form), between pH 2.7 and pH 4.3 the fast migrating form (F

form) and below pH 2.7 the extended form (E form) [6]. Figure 4 shows simplified models

of different spatial conformations of BSA. Instead of the atoms of the polypeptide chain

only the different secondary structures and their relative position are drawn.

3.2.2 Lysozyme

Lysozyme can be found abundantly in most body liquids like saliva, plasma and tears. It

is the main pellicle-bound bacteriolytical component [14]. Its antibacterial effect is caused

by the ability to enzymatically dissolve the cell wall of bacteria and to activate bacterial

autolysis [14].

The lysozyme used in this work is extracted from chicken egg white. It consists of 129

amino acids and has a molecular weight of approximately 14.3 kg/mol [27]. Its shape is

globular with a size of roughly 4 nm by 3 nm by 2.5 nm [1] as visualised by the model

shown in figure 5. Lysozyme is a basic protein with its isoelectric point at pH 9.3 [36]. It

shows optimum efficiency at pH 4.5 [27].

3.2.3 Amylase

Amylase is a digestive enzyme that breaks down starch. It is produced in the salivary

glands and in the pancreas. In human saliva it is the most abundant enzyme and it is a

major component of pellicle as well [12]. Like lysozyme it keeps its enzymatic activity in

the pellicle [13]. Amylase complexes in the pellicle are binding sites for pioneer bacteria

and play thus an important role in plaque formation [13]. Salivary amylase also called

pytalin can break polysaccharides down into maltose and glucose. It works only at a pH

of about 7 and is inactivated in the stomach by gastric acid [27]. The isoelectric point of

amylase is at pH 6.3 [36].
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Figure 5: Conformation models of amylase and lysozyme. α helices are represented by

helices, β sheets by flat arrows and random coil regions by cords [1]

Human salivary amylase consists of 496 amino acids and has a molecular weight of

56 kg/mol. Its size is approximately 7.5 nm by 4.5 nm by 4.5 nm [1]. A model of the

conformation is show in figure 5.

3.3 Time-of-flight secondary ion mass spectrometry

In secondary ion mass spectrometry (SIMS), a beam of fast primary ions forms secondary

particles on a bombarded surface from which they are ejected. Only few of the secondary

atoms and molecules are ionized by the collision and can be examined by a mass analyser.

In the case of time-of-flight secondary ion mass spectrometry (ToF-SIMS), the ions are

accelerated to a certain energy. Then ions of different masses are separated by the time

they need to fly a given distance.

The most important condition for the examined samples is their ability to tolerate

ultra high vacuum conditions with pressures below 10−8 mbar. A vacuum is necessary

to prevent collisions of the primary and secondary ions on their drift trajectories with

air molecules. Furthermore, it prevents a contamination of the sample surface during

analysis. Electric charging of the sample must be prevented because it may degrade or

even suppress the secondary ion signal. To examine electric insulators they are flooded

with slow electrons between the primary ion pulses to compensate charging of the sample.

3.3.1 Creation of primary ions

The primary ions can be created for example by electron collision ionisation, plasma

ionisation, surface ionisation or in a liquid metal ion source (LMIS). The latter is employed

in the ToF-SIMS apparatus used for this work. The source is a metal tip in a reservoir of

liquid metal that forms a film on the surface of the tip. Between the tip and an aperture

lying in front of it, a strong electric field (for a gallium source about 1010 V/m [9]) is

applied to create ions from the metal film by field ionisation and accelerate them towards
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Figure 6: Sketch of a liquid metal ion source [28]

the sample (see figure 6). Compared to other sources [9] a liquid metal source generates

a very intense beam and has a small lateral source size of about 50 nanometres. This

creates large space charge effects near the tip of the source causing the emitted ions to

have a relatively high energy spread of more than five electron volts. Thus the spot size

on the surface is limited by chromatic aberrations. Anyway, liquid metal ion sources are

the ones that offer smallest spot size compared to other ion sources [9].

3.3.2 Sample interaction

Before their arrival on the sample surface, the primary ions are accelerated to energies of

several kilo-electron volts. Since these energies are significantly larger than typical binding

energies, most of the molecular bonds near the impact site are broken and mainly atomic

secondary particles are emitted. A part of the primary ion’s energy propagates into the

sample in form of a collision cascade. Thus particles can be emitted from sites further

apart from the impact, too. Since the available energy is smaller at these sites, molecular

bonds are not necessarily broken and molecules can be emitted in larger fragments or

as an integrated whole. The diameter of the collision cascade is typically smaller than

five nanometres in organic compounds and smaller than twenty nanometres in metals

[28]. Only particles from the uppermost monolayers have enough energy to overcome

the surface binding energy and to escape from the sample. A small fraction of them

(10−6 − 10−1 [2]) is charged and can be mass analysed.

To limit the analysis to the uppermost monolayers and to minimize sample damage,

an experiment has to be done in static mode (Static Secondary Ion Mass Spectrometry:

SSIMS). This is the case if the probability of any sample site to be hit by more than one

primary ion is negligible. The mean number n̄ of primary ions hitting an area A is related

to the ion dose D by

DA = n̄. (1)

Assuming for static mode that n̄ < 0.01 and A = 10 nm2, one can calculate the maximum

ion dose in SSIMS as

D < 1013 cm−2. (2)

The secondary ion yield Y is defined as the number of detected secondary ions per
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primary ion. It is strongly dependent on the chemical environment at the emission site.

This matrix effect complicates the analysis of ToF-SIMS spectra because the varying

yield for different secondary ions as well as for different sample sites leads to an intensity

distribution in the mass spectrum that does not necessarily reflect the sample surface

composition.

3.3.3 Time-of-flight mass analysis

The principle of time-of-flight (ToF) mass analysis is as follows: All secondary ions are

accelerated to the same kinetic energy and drift over a field free distance. At the end of it,

the ions are detected and one can discriminate different masses by their differing times-

of-flight. To measure a time interval, one needs a well-defined starting time. Therefore

the primary ion beam is pulsed and it is blanked after each pulse until all secondary ions

have arrived at the detector. The advantage over other mass analysers like quadrupole

or magnetic sector field systems lies in the parallel acquisition of signals from all masses.

In addition, ToF mass analysers offer a greater transmission [2] which allows a better

exploitation of the limited number of available secondary ions.

Usually the secondary ions are accelerated to kinetic energies of several kilo-electron

volts. Thus their kinetic energy is negligible against their rest energy, which amounts al-

ready to nearly one giga-electron volt for a single proton. Hence the following calculations

are done in non-relativistic approximation.

To calculate the time-of-flight, the following variables are defined: From the sample

surface secondary ions of mass m and electric charge q are accelerated on a distance d by

an electric field of strength E. Thus they traverse a voltage V = Ed. Afterwards they

drift on a field free distance D and are detected at the time t. Within the acceleration

the force F on the ions and their acceleration a are related by

F = Eq and F = ma (3)

⇒ a = Eq/m. (4)

The final velocity u and the time ta to traverse the acceleration range are thus

u =
∫ ta

t0

adt = u0 + Etaq/m (5)

⇒ ta =
(u− u0)m

Eq
. (6)

u0 is the initial velocity of the ions at the starting time t0. From the kinetic energy T at

the end of the acceleration one can calculate the drift velocity ud

T = qV = qEd = 1/2mu2

d (7)

⇒ ud = u− u0 =

√

2qV

m
. (8)

Assuming a small initial velocity (u0 ≪ u), it follows that

u ≈ ud =

√

2qV

m
. (9)
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Hence the drift time tD is

tD = D/u =
D

√

2qV/m
. (10)

The observed time-of-flight t is the sum of the preceding times and the reacting time tR
of the detector

t = t0 + ta + tD + tR. (11)

Since the acceleration occurs on a distance of typically some millimetres and the drift

distance measures about one metre, the drift time is with some 100 µs much longer than all

the other terms and one can use equation (10) as good approximation of the time-of-flight.

The charge of the secondary ions amounts to q = ze. z is the charge number and e

the elementary charge. Thus it follows from equation (10) that

t2 =
D2

2V

m

q
∝ m

z
. (12)

To derive the mass to charge ratio m/z from the time-of-flight, one has to determine by

calibration the proportionality constant n in

m

z
= nt2 (13)

The mass of an ion of given charge is determined by m = ct2 with a proportionality

constant c. By deriving, one gets dm = 2cdt. Hence the mass resolution m/∆m is

inversely proportional to the relative uncertainty in the measurement of the time-of-flight

∆t/t:
m

∆m
=

t

2∆t
. (14)

Reasons for this uncertainty are the spread of initial velocities, energies and positions as

well as the spread in the formation times of the secondary ions. Furthermore non-ideal

accelerating fields and jitter of the detection system contribute to the uncertainty.

In case of a solid sample all secondary ions are created at its surface and traverse the

same acceleration distance. With an initial energy T0, their drift energy TD and their

drift time tD are

TD = T0 + qV (15)

tD = D

√

m

2(T0 + qV )
. (16)

Assuming a long drift distance (t = tD),

dt = dtD =

D
2

√

m
2

(T0 + qV )
√
T0 + qV

dT0 (17)

⇒ dm

m
=

2dt

t
=

dT0

T0 + qV
(18)

holds.

Since the acceleration energy usually is much larger than the initial kinetic energy

(qV ≫ T0), the mass resolution is

m

∆m
=

T0 + qV

∆T0

≈ qV

∆T0

. (19)
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Figure 7: Effect of the initial energy on the trajectories of ions of equal mass

To achieve a high mass resolution, the spread in the initial energy has to be compensated.

This is usually done by letting high energy ions traverse a longer distance than low energy

ions. In the mass spectrometer used for this work, this is realised by a system of three

electric 90◦ sector fields. Therein the trajectories of high energy ions have larger radii

than the ones of low energy ions as sketched in figure 7.

The uncertainty in the time of ion creation t0 is mainly determined by the length of

the primary ion pulse. For the apparatus employed for this work, it amounts to roughly

ten nanoseconds.

Because of their high sensitivity, electron multipliers and micro channel plates are

used as detectors. In the ideal case, all electrons created by the impact of one secondary

ion should arrive at the same time at the detector anode. Furthermore an amplifier with

a short time constant and an exact determination of the starting time t0 are needed to

prevent signal broadening. Actually none of these conditions is perfectly met, so that a

single secondary ion usually creates a signal pulse of up to ten nanoseconds width [11].

Figure 8 shows the layout of the triple focusing time-of-flight (TRIFT) mass spectrom-

eter used in this work. Due to a system of electrostatic lenses, it offers not only energy

focusing but also direction focusing. Hence on the channel plate detector an image of

the ion distribution on the sample’s surface is created. In the figure, the ion images of

aluminium and copper from an aluminium copper grid are shown to illustrate this.

3.4 Fluorescence microscopy

Fluorescence microscopy is a kind of optical microscopy allowing the visualization of

objects containing a fluorescing molecule, a so-called fluorophore.

Absorption of light in the visible or ultraviolet range by a molecule can lead to an
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Figure 8: Layout of the TRIFT mass spectrometer (modified from [9])

electronically excited state. Afterwards there exist several different ways for the molecule

to return to its ground state. If this relaxation is accompanied by the emission of radia-

tion, one speaks of luminescence. Due to electron pairing, the electronic ground state of

a molecule with an even number of electrons is usually a singlet state called S0 with van-

ishing total spin. This electronic state can be subdivided into several vibrational states

(denoted ν0, ν1, ν2, ...), but at room temperature mainly the vibrational ground state is

occupied. By absorption of a photon with the matching energy, the molecule can be ex-

cited into a vibrational state of the first (S1) or higher (S2, ...) excited electronic singlet

states. The principles of excitation and relaxation in a fluorophore are sketched in figure

9. An excitation into a triplet state is forbidden by quantum selection rules because it

would require a spin-flip which cannot be caused by a photon [5].

Then the molecule relaxes by radiation free transitions to the vibrational ground state

of the first excited electronic state. The energy is dispersed to inner vibrational states of

the molecule or to vibrational states of neighbouring molecules [7]. Anyway, the molecule

does not relax by radiation free transitions from the first excited electronic state to the

electronic ground state. Since the energetic difference among the states S1 and S0 is

larger than between the others, more vibrations would have to be excited simultaneously

reducing the probability of a radiation free transition to occur. Thus the molecule relaxes

by emission of a photon.

Once the molecule has arrived in the S1 vibrational ground state intersystem crossing

can occur with little probability. In this case the transition from the singlet system to

the triplet system takes place. Another possible way to leave the S1 state is relaxation

by fluorescence quenching if the excitation energy is transferred to a so-called quencher

molecule.

Fluorescence occurs upon the radiating transition from the S1 vibrational ground state
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Figure 9: Scheme of excitation and relaxation in a fluorophore. Radiation transitions are

symbolised by solid lines, radiation free transitions by dashed lines

into a vibrational state of the electronic ground state S0. Typical transition rates are 107

to 108 per second [7].

Phosphorescence is generated by the radiating transition from the vibrational ground

state of the first excited electronic triplet state T1 to a vibrational state of the electronic

ground state S0. Its transition rate is much smaller with typical values ranging from less

than one up to 104 per second [7].

The setup of a fluorescence microscope resembles the one of an ordinary light micro-

scope. Typically a mercury lamp or a laser is used to illuminate the samples. In the first

case the wavelength for exciting the fluorophore is selected by a set of filters. A dichriotic

mirror reflects the light through the observation optics onto the sample surface. The

fluorescing molecules emit light which is collected by the observation optics. Since the

wavelength of the emitted light is longer then the one of the exciting light, it can pass the

dichriotic mirror to be guided to the ocular pieces, a camera or a photomultiplier where

it is detected.

The advantages of fluorescence microscopy over normal optical microscopy are the

following:

• Objects showing little contrast with respect to one another can be distinguished by

marking them with different fluorophores emitting at different wavelengths.

• Since they act as light sources, fluorescing objects much smaller than the optical

resolution of the microscope can be detected.

A drawback of the method is the possible modification of the sample’s chemical or phys-

ical properties by the introduction of a fluorophore. Additionally, the properties of the

fluorophore, especially its fluorescence yield, can be strongly dependent on its chemical

environment making comparisons of different samples difficult.

Using normal light microscopy the protein layers dealt with in this work are not visible.

So it is necessary to modify them with fluorescence markers for imaging.
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Figure 10: Layout of a scanning force microscope (modified from [27])

3.5 Scanning force microscopy

Scanning force microscopy (SFM) is a scanning probe microscopy method. It allows

imaging of the topography of non conducting samples in air as well as in liquid with a

typical lateral resolution of some nanometres and a height resolution of less than one

Ångström [3]. Since it is possible to achieve a resolution of atomic scale, this method is

also called atomic force microscopy (AFM).

Figure 10 shows the layout of a scanning force microscope. The very fine tip of a

cantilever serves as probe to explore the surface of a sample placed on a stage which

can be moved in three dimensions by piezoelectric actuators. A laser spot is reflected

from the cantilever onto the centre of a four segment photo diode. By measuring the

light intensities on the four segments and calculating the differences between the intensity

arriving on the upper and lower half and between the right and left half of the photo

diode, movements of the cantilever can be detected. If the cantilever is bent, the first

difference is non-zero; if it is twisted, the second difference is non-zero.

In the so-called contact mode the sample is approached to the cantilever until its tip

feels the repulsive force caused by the sample surface. This force causes an upwards

bending of the cantilever and can thus be detected via the photo diode. There are two

possibilities to scan the sample surface:

In the constant height mode the z position of the sample is held constant while scanning

in x and y directions. Here x, y and z are the axes of a Cartesian coordinate system with

the z axis perpendicular to the sample surface and the x and y axes in the sample surface

plane (see figure 10). Any height differences of the sample surface cause a change in the

force acting on the cantilever tip which is recorded to calculate an image of the sample

surface. Due to the limited flexibility of the cantilever, this mode can only be used on

very flat surfaces.

In the constant force mode the z position of the sample is modified by a control circuit

to maintain the force acting on the cantilever tip constant while scanning. This way the

distance between cantilever tip and sample surface remains constant. Hence the variations
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Figure 11: Block circuit diagram of a scanning electron microscope (modified from [25])

of the position of the z piezoelectric drive correspond directly to the height variations on

the sample surface and can be used to create an image. This mode can be used on flat as

well as on rough surfaces but it is slower than the constant height mode.

Another possibility for imaging the sample surface is the dynamic mode (also called

tapping mode or AC mode). In this case the cantilever is set to oscillation by a piezoelec-

tric element at a frequency near its resonance frequency. The amplitude of the cantilever

oscillation is detected via the photo diode. If the cantilever approaches the sample surface

and forces act, the amplitude changes. Similar to the constant force mode, the z position

of the sample is modified while scanning in the x and y directions to maintain the am-

plitude change constant. Hence the distance between the cantilever tip and the surface

remains constant and the position variations of the z piezoelectric drive can be used to

create an image of the surface topography. Since in dynamic mode the force acting on the

sample surface is smaller than in contact mode, the former is especially useful for imaging

soft and delicate samples. The advantage of the contact mode lies in its higher lateral

resolution [27].

3.6 Scanning electron microscopy

The principle of a scanning electron microscope (SEM) is represented by figure 11. The

whole system has to be evacuated to below 10−5 millibar [25] to achieve long enough

mean free pathways for the electrons. In an electron gun a beam of so-called primary

electrons (PE) with typical energies of about 104 electron volts [25] is produced by thermal

emission or field emission. By a column of lenses it is focused on the investigated specimen.

Scanning coils scan the primary beam over the surface of the specimen. The scan generator
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synchronizes the scanning of the primary beam to the formation of an image on a computer

screen (in former times on a cathode ray tube (CRT)). This way the scanning image

is faithfully reproduced on the screen. When the primary electrons hit the surface of

a specimen, several interactions can occur. For imaging only the produced secondary

electrons of low energies (0 - 50 eV [25]) and backscattered electrons of high energies

(about 104 eV [25]) are used. A laterally placed, positively biased detector collects the

electrons. The intensity of its output signal is used to modulate the brightness of the

point on the screen corresponding to the point on the sample surface being scanned.

Due to their small energy, secondary electrons can only be emitted from a specimen if

they are produced very close to the surface. Backscattered electrons can also leave the

specimen from deeper layers. They contribute to image formation mainly by releasing

more secondary electrons on their way back to the surface. The main cause of contrast

in the created image is the number of secondary electrons created close to the surface. It

is influenced by the following properties of the specimen:

• Tilting: Surfaces non-perpendicular to the primary beam are brighter than surfaces

perpendicular to it.

• Topography: Spikes and edges appear brighter than plane surfaces.

• Electric charge: Negatively charged regions are brighter than positively charged

ones.

• Chemical composition: Heavy elements appear brighter than light ones.

If the latter two effects are negligible, the image creates a three dimensional impression

of the specimen.

The main advantages of SEM imaging over optical microscopy imaging are an about

300 times greater depth of focus [25] due to the small illumination aperture (0.06◦ to 0.6◦)

of the primary beam and a point resolution of down to two nanometres [25].

3.7 Principal component analysis

Mass spectra of proteins are very complex, because every protein can decompose into

several different fragments visible as peaks in the mass spectra. Considering only the

masses from 1 amu/z (atomic mass unit per charge number) to 200 amu/z, every measured

spectrum can be interpreted as a point in a two hundred dimensional space spanned

by unit vectors corresponding to the different masses. The intensity of a mass peak

determines its projection onto the corresponding vector. In this space, spectra of different

proteins should be grouped at different sites due to their similarity. Unfortunately it is

not possible to visualize such a high dimensional space.

Principal component analysis (PCA) is a method of linear algebra with the goal to

concentrate the information contained in a data set onto a small number of variables

called principal components (PC).

Comprehensive information on PCA can be found in the books by Jackson [17] and

Jolliffe [18]. The following explanation is based upon the tutorial by Shlens [29].
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3.7.1 Change of basis

Let a mass spectrum be represented by a column vector ~x of length m containing as

elements the intensities at the masses from 1 amu/z to m amu/z. Out of n spectra one

can construct an m× n data matrix X :

X = [~x1 · · ·~xn]. (20)

PCA searches a basis to represent the data set in a way that concentrates the information

onto just a few of the new basis vectors. The new basis vectors should be linear combina-

tions of the old ones, to allow the use of the well established techniques of linear algebra.

Thus a transformation matrix P is needed to transform the data matrix into a new m×n

matrix Y :

Y = PX. (21)

The row vectors p1 · · · pm of P are the new basis vectors and by definition the principal

components of X .

3.7.2 Variance and covariance

A well transformed matrix Y should fulfil mainly two criteria: Firstly, it should con-

tain as much relevant information as possible. Assuming the measured data are not too

noisy, directions in the data space showing a large variance are the interesting ones. By

assumption, the effects of interest show stronger dynamics than the measurement noise.

Secondly, there should not be any redundancy. Since the number of relevant variables

should be as small as possible, mutual dependencies between them have to be eliminated.

The mutual dependency of two variables is characterised by their covariance. Let a

and b be two mean centred row vectors of the data matrix X . Their elements are thus

the intensities at one mass in different measurements minus the mean intensity at the

respective mass. Their covariance σ2
ab is defined as

σ2

ab :=
1

n− 1
abT . (22)

bT is the transposed vector of b. The covariance fulfils the following:

• σ2
ab ≥ 0. The covariance is zero if and only if the variables are uncorrelated.

• a = b ⇒ σ2
ab = σ2

a. The covariance of a variable with itself is its variance.

• σ2
ab = σ2

ba. The covariance is symmetric with respect to the variables.

Further explanations concerning the concept of covariance can be found in the tutorial

on PCA by Smith [30].

Since the xi are the rows of the data matrix X , one can generalise the definition of

the covariance to a covariance matrix CX :

CX :=
1

n− 1
XXT . (23)

It has the following properties:
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• CX is a symmetric m×m matrix.

• The diagonal elements are the variances of the variables contained in X .

• The off-diagonal elements are the covariances between the variables contained in X .

To minimize covariance, the covariance matrix of the data in the transformed basis

CY has to be diagonal. This way all covariances are zero which is their smallest possible

value.

3.7.3 Diagonalisation of the covariance matrix

A matrix P of basis vectors p1 · · · pm is searched to diagonalise the covariance matrix CY

of Y = PX . The basis vectors are ordered by their importance by assuming that vectors

with the highest variance are the most important ones. As a further assumption, PCA

postulates orthonormality of the new basis vectors. This is to make the solution achievable

by methods of linear algebra. By this assumption, P is an orthogonal matrix (P T = P−1

: The transposed matrix of P is its inverse). One can express the new covariance matrix

CY as a function of the searched matrix P :

CY =
1

n− 1
Y Y T // Y = PX (24)

=
1

n− 1
PXXTP T // CX =

1

n− 1
XXT (25)

= PCXP
T . (26)

The covariance matrix CX is symmetric by its construction:

CT
X = (

1

n− 1
XXT )T =

1

n− 1
XTT

XT =
1

n− 1
XXT = CX . (27)

Every symmetric matrix can be diagonalised by an orthogonal matrix O. The columns

of O are the eigenvectors of CX . The elements of the resulting diagonal matrix D are the

eigenvalues of CX (a proof can be found in [29]):

CX = ODOT . (28)

A matrix CX of rank r ≤ m has exactly r orthonormal eigenvectors. If CX is degenerate

(i. e. r < m), one can freely choose m − r additional orthonormal vectors to fill up O.

These do not influence the solution because their eigenvalues are zero.

Let the row vectors pi of P be the eigenvectors of CX . Consequently P = OT holds.

Hence from equation(28) it follows that

CX = P TDP. (29)

With this, one can substitute CX in equation (26):

CY = PP TDPP T // P T = P−1 (30)

= D (31)

Obviously the covariance matrix is diagonal by employing this P . Its diagonal elements

are the variances of the respective variables. The solution of PCA can be summarised as

follows:
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• The mean centred m × n data matrix X is transformed by the orthogonal matrix

P to a new m× n matrix Y (Y = PX). Its elements are the so-called scores of the

n measurements on the m new basis vectors, the principal components. The scores

link the measurements to the principal components.

• To calculate the principal components, the covariance matrix CX of X is used:

CX = 1

n−1
XXT .

• The eigenvectors of CX are the principal components of X and the row vectors of

P . The elements of the PC, called loadings, show how strongly the initial vari-

ables (masses) influence the PC. Loadings link the initial variables to the principal

components.

• The eigenvalues of CX are the diagonal elements of CY . Their values are the vari-

ances of the respective principal components.

• The eigenvectors and -values are ordered by descending variance, that is by descend-

ing eigenvalues.

• This way, the relevant information is concentrated onto the first principal compo-

nents.

3.7.4 Graphical representation

To visualise the results of principal component analysis, one usually plots the first two

or three scores vectors and loading vectors. In the scores plot, the positions of the mea-

surements in the space spanned by the first principal components are visible. Under

favourable circumstances the measurements are grouped according to their sample type

in this space. The corresponding loadings plot shows which of the initial variables are

responsible for the positioning of the measurements in the scores plot.

This shall be clarified by an example. Here, the “measurements” are ten simulated

mass spectra each of acetone, ethanol and a 1:1 mixture of the two. The scores and

loadings on the first two PC are given in figure 12. The percent values at the axes are

the relative variances explained by an axis.

The scores plot shows that the first principal component separates the three sample

types. The spread on the second PC is caused by the equally simulated noise of the

measurements. In the loadings plot one can see that the first PC is dominated by the

masses 58 amu/z (acetone) in the negative direction and by 46 amu/z (ethanol) in the

positive direction. Accordingly, in the scores plot acetone shows negative values on the

first PC and ethanol shows positive values.

In the representation of a two dimensional scores plot, it is possible to draw a prob-

ability ellipse around a group of data points. Therefore one has to do once again PCA

on these data represented in the space of the first two principal components of the prior

analysis. The centre of the ellipse is given by the mean values of the data points on the

two axes. The two new principal components define the directions of the axes of the

ellipse. The first principal component gives the direction of highest variance, the major

axis of the ellipse. The second principal component is by definition orthonormal to the
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Figure 12: Results of PCA on simulated data
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first one and gives the direction of the minor axis. The eigenvalues λ1 and λ2 associated

to the principal components are used to calculate the lengths of the axes. The length of

the semimajor axis is given by

l1 =
√

λ1T 2
α. (32)

The length of the semiminor axis is

l2 =
√

λ2T 2
α. (33)

Here T 2
α is the critical value of the T 2 distribution which is related to the critical value

Fp,n−p,α of the F distribution by

T 2

α,n,p =
p(n− 1)

n− p
Fp,n−p,α. (34)

p is the number of variables (here p = 2) and n is the number of measurements in the

data set. The T 2 statistic predicts that a data point of the considered sample can be

found with a probability of P = 1 − α in the so defined ellipse [17]. In this work a level

of significance α = 0.05 is used. The F distribution is a probability density function of a

continuous positive random variable x with two independent degrees of freedom a and b

as parameters. In the case of the probability ellipses the parameters a and b correspond

to the number of variables p and the reduced number of measurements n − p. The F

distribution is described by the following formula [16]:

F (x|a, b) = Γ(a
2
+ b

2
)

Γ(a
2
)Γ( b

2
)

x
a
2
−1

(1 + a
b
x)

a+b
2

. (35)

Γ(x) is the gamma function given by

Γ(x) =
∫ ∞

0

tx−1 exp(−t)dt. (36)

Further properties of the F distribution can be found in the book “Statistik” by Hartung

[16]. The critical value of the F distribution Fa,b,α is defined by

∫ Fa,b,α

0

F (x|a, b)dx = 1− α. (37)

Therefore the random variable has a probability of 1 − α to be smaller than the critical

value of the F distribution. Figure 13 illustrates this for the case a = 2 and b = 14. The

hatched area represents the probability of 95% for x to be smaller than the critical value

F2,14,0.05 = 3.74. Critical values of the F distribution are tabulated for example in the

“User’s guide to principal components” by Jackson [17].

3.7.5 Discriminating principal component analysis

The goal of this work is to recognize different adsorbed proteins by their mass spectra.

Therefore a representation of the data stressing the differences between the proteins is

necessary. Yet, PCA searches the components with largest variance regardless of whether

this is the variance between spectra of one protein (“internal” variance) or between the

spectra of different proteins (“external” variance).
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Figure 13: Example of an F distribution with the parameters a = 2 and b = 14 and its

critical value F2,14,0.05 = 3.74 for a significance level of α = 0.05

To achieve a good discrimination between the different sample types, it would be

better to maximise the relation of external variance to internal variance. This is the goal

of discriminant principal component analysis (DPCA) as described by Yendle [37].

A simple approach to DPCA would be to replace the spectra of one protein by the

mean spectrum of this protein. Thus the internal variance would be zero and normal PCA

would find the axes of highest external variance. With the resulting principal components

one could transform the initial data matrix.

However, in the initial data the axes of highest external variance could be the ones of

highest internal variance as well. Hence the simple approach would not maximise just the

distance between different proteins but also the spread within the protein groups. Thus

the internal variance has to be taken into account to calculate the principal components.

Therefore the initial variables (masses) are scaled by their total internal standard

deviation. That is, first one calculates the internal variances of each variable for all the

different proteins. These are summed to form the total internal variance of each variable.

By root extraction one obtains the total internal standard deviations to scale the values

of the respective variables. This way variables with a small internal variance are scaled

up and vice versa.

In the resulting scaled data set all the spectra of a protein are replaced by its mean

spectrum. Afterwards a normal PCA is done. The resulting principal components are

the discriminating principal components (DPC) for transforming the scaled data set. The

transformed data can be used to create scores plots that maximise the external variance

while minimising the internal variance, to allow the best possible discrimination between

the sample types.

The general disadvantage of DPCA is the need of a training data set with known
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discrimination of the measurements into groups to calculate the principal components.

Therefore DPCA is called a supervised technique of multivariate data analysis while PCA

is an unsupervised technique. After having calculated the DPC, one can use these for

transforming new measurement data, to see to which of the known groups these belong.

The only condition is that the differences between training data and unknown data must

not be too large.

Since the goal of this work is not the recognition of unknown patterns in the data but

the attribution of measurements (mass spectra) to known groups (proteins), a training

phase is also necessary in normal PCA to know, where in the scores plot the proteins can

be found. Hence in this case the named disadvantage of DPCA does not matter.

3.7.6 Evaluation

In this work the Leave-One-Out-Technique (LOO) shall be used to evaluate how well a

(D)PCA projection fits the data. As suggested by the name, one measurement is left out

of the data set before performing (D)PCA. Afterwards this measurement is projected into

the space spanned by the principal components using the loadings matrix.

Now the measurement can be assigned to one of the sample groups. This can be done

by calculating the euclidean distances on the first principal components to the centres of

gravity of the sample groups and assigning the left out measurement to the closest group.

The great advantage of this method is its simplicity but on the other hand it cannot

deal with outliers. Even samples that do not belong to any group are assigned to one.

Another possibility is to draw probability ellipses around the sample groups on the first two

principal components and to assign the left out measurement to a group if its projection

lies in the corresponding ellipse. With this method outliers can be identified because they

should not lie in any probability ellipse. The problem lies in the fact that projections can

be found in the overlap of more than one ellipse. In this case no unambiguous assignment

is possible.

The procedure is repeated with leaving out different measurements until all of them

have been left out once. If most of the measurements are assigned to the correct group,

the (D)PCA projection fits well the data and can be used to project unknown data and

assign them to the known sample groups. If on the other hand many measurements are

assigned to the wrong groups, the (D)PCA projection cannot be used to represent the

data.
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4 Experimental aspects

4.1 Chemicals

• Bovine serum albumin fraction V, approximately 99%, Sigma-Aldrich, Germany.

• Lysozyme from chicken egg white, approximately 95%, Sigma-Aldrich, Germany.

• α-Amylase from human saliva, Fluka BioChemika, USA.

• Bovine serum albumin fluorescein conjugate, Invitrogen, Germany

• Glutardialdehyde solution, 50% in water, Merck-Schuchardt, Germany.

• 3-Aminopropyl-tri(ethoxy)silane, minimum 98%, Sigma-Aldrich, Germany.

• Sodium di(hydrogen)phosphate monohydrate, minimum 99.5%, Fluka BioChemika,

Switzerland.

• Disodium hydrogenphosphate, minimum 99%, Riedel-de Haën, Germany.

• Bidistilled water with a resistivity of 182 kΩm from a “Milli-Q A10” water purifi-

cation system, Millipore, USA.

• Dehydrated, denatured ethanol, Department of Chemistry, Technische Universität

Kaiserslautern, Germany.

• Hydrogen peroxide, 35%, Department of Chemistry, Technische Universität Kaisers-

lautern, Germany.

• Sulphuric acid, 95 − 97%, Department of Chemistry, Technische Universität Kai-

serslautern, Germany.

• Sodium hypochlorite solution, approximately 13% of active chlorine, Department of

Chemistry, Technische Universität Kaiserslautern, Germany.

• Dehydrated toluene, work group of Professor Thiel, Department of Chemistry, Tech-

nische Universität Kaiserslautern, Germany.

4.2 Sample preparation

4.2.1 Dental material

The dental implant materials and the samples of bovine enamel are provided by the

work group of Professor Matthias Hannig, Universitätsklinikum Homburg, in pieces of

roughly five millimetres by five millimetres size. The dental implant materials are polymer

matrices containing apatite particles. The two examined types are called FAT and FAW

for fluoroapatite with a more transparent or more whitish appearance. They are made of

the following substances:

• silanized (for FAW) or unsilanized (for FAT) fluoroapatite (Ca5(PO4)3F) particles



4 EXPERIMENTAL ASPECTS 30

• bis-phenol-A-glycidyl-di(methacrylate)

• tri(ethylene glycol)-di(methacrylate)

• poly(methacryl)oligo(maleic acid)

• camphor quinone

• strontium

The surfaces are polished. Before being used, the substrates are ultrasonically cleaned for

five minutes in a solution of one percent of sodium hypochlorite. To remove a possible

deposit of sodium hypochlorite, they are ultrasonically cleaned for another five minutes

in bidistilled water and rinsed three times in bidistilled water.

4.2.2 Protein films on silanised substrates

Approximately ten millimetres by five millimetres large silicon wafer pieces serve as sub-

strate in this case. First they are cleaned for fifteen minutes in a solution consisting to

two thirds of concentrated sulphuric acid and to one third of a thirty-five percent solution

of hydrogen peroxide. This cleaning solution is called piranha solution for its ability to

remove most organic matter. Afterwards the substrates are rinsed with bidistilled water

and dried with nitrogen. Then they are placed for one hour under protective gas in a mix-

ture of 20 ml of dry toluene and 0.5 ml of 3-aminopropyl-tri(ethoxy)silane (APTES). First

the APTES hydrolises with the residual water in the solution to form a silanol. The latter

can covalently bind to the oxide atoms of the silicon oxide to form a monolayer as shown

in figure 14. At the same time the silane can also polymerise. To remove polymerised

silane from the surface, the samples are given into an ultrasonic bath for fifteen minutes

in ethanol.Then they are rinsed with bidistilled water. Silanised substrates are imaged

with a scanning electron microscope (SEM) by Dr. Stefan Trellenkamp, Nano+BioCenter

Kaiserslautern. When the samples are not sonicated in ethanol, many aggregates of poly-

merised silane can be found on the surface (see figure 15). Their number is strongly

reduced after sonication.

Glutardialdehyde serves as link between the silane and the protein. It shall bind to

the silane as shown in figure 16. Therefore the samples are placed for one hour in a

five percent (volume / volume) solution of glutardialdehyde in pH 7 buffer solution. The

pH-value of the buffer solution is adjusted by mixing a 0.1 molar solution of sodium

di(hydrogen)phosphate (NaH2PO4) and a 0.1 molar solution of disodium hydrogenphos-

phate (Na2HPO4). It is controlled with a pH electrode “Testo 252” by “Testo”, Germany.

After the adsorption of glutardialdehyde the samples are rinsed with buffer solution. The

actual protein adsorption also takes place in pH 7 buffer solution for one hour with pro-

tein concentrations of two grammes per litre. All adsorption steps are effectuated at room

temperature. To remove loosely bound protein, the samples are rinsed with fresh buffer

solution. In a last step they are rinsed another three times with bidistilled water to remove

buffer salts and dried with argon.
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Figure 14: Hydrolysis (1), binding (2a) and polymerisation (2b) of APTES

Figure 15: SEM image of a silanized substrate with aggregates of polymerised silane
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Figure 16: Binding of glutardialdehyde to the silane (1) and of a protein R to glutar-

dialdehyde (2)

4.2.3 Protein films on silicon substrates

To prevent the possible influence of polymerised silane on the protein mass spectra, protein

films are prepared directly on silicon. As in the previous section ten by five millimetre

silicon wafer pieces are used as substrates. These are cleaned for fifteen minutes in piranha

solution. Afterwards the substrates are rinsed with bidistilled water and given into protein

solutions with a concentration of one to five grammes per litre. The solvent for the proteins

is either bidistilled water or a pH 7 phosphate buffer as described above. After two hours

of adsorption the samples are rinsed three times with bidistilled water to remove loosely

bound protein and buffer salts and dried with argon.

4.2.4 Protein films on dental implant materials

Substrates of the dental implant materials FAT and FAW are ultrasonically cleaned for

ten minutes in a two percent solution of sodium hypochlorite (NaOCl). Afterwards the

substrates are given for another five minutes in an ultrasonic bath in bidistilled water and

rinsed with bidistilled water to remove remainders of sodium hypochlorite. The proteins

are solved with molarities of about 10−4 mols of protein per litre pH 7.4 buffer solution,

which is prepared from 0.01 molar solutions of disodium hydrogenphosphate and sodium

di(hydrogen)phosphate as described above. For protein adsorption the cleaned substrates

are given into protein solutions for two hours at room temperature. Then the samples are

rinsed three times with bidistilled water to remove buffer salts and loosely bound protein

and dried with argon.
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Figure 17: Chemical structure of fluorescein

4.2.5 Samples for fluorescence microscopy

Protein layers are prepared on silicon substrates for fluorescence microscopy. The sub-

strate pieces of ten by five millimetres size are cleaned for twenty minutes in piranha

solution and rinsed with bidistilled water. Afterwards proteins are adsorbed from a phos-

phate buffer solution with pH 7.4. Either only BSA conjugated with the fluorophore

fluorescein (C20H12O5, see figure 17 for chemical structure) or a 1:1 (weight:weight) mix-

ture of BSA fluorescein conjugate and non-marked lysozyme are adsorbed for two hours

at room temperature. According to the manufacturer Molecular Probes (USA) the ab-

sorption and emission maxima of the BSA fluorescein conjugate are at wavelengths of 494

nm and 520 nm. After protein adsorption the samples are either rinsed with bidistilled

water and air-dried or air-dried without prior rinsing.

On one sample the protein is adsorbed onto a silane layer. Therefore the cleaned

substrate is given into a solution of 0.5 ml of 3-aminopropyl-tri(ethoxy)silane (APTES)

in 20 ml of dry toluene at 80 ◦C to 90 ◦C for two hours under protective gas. Then

the sample is baked out at 150 ◦C for another two hours to favour the formation of an

APTES monolayer. Next the sample is given into a 1% glutardialdehyde solution in pH

7.4 phosphate buffer for one hour. This way a monolayer of glutardialdehyde should build

on the silane layer as described above. Before protein adsorption the sample is rinsed with

bidistilled water.

4.3 Time-of-flight secondary ion mass spectrometry

All measurements are made with a “TRIFT II” (TRIple Focusing Time-of-flight) appara-

tus by “Physical Electronics”, USA. The use of this instrument was kindly allowed by its

owner, the “Institut für Oberflächen- und Schichtanalytik, Kaiserslautern (IfOS). The ion

source is a liquid metal gallium gun that produces primary ions with an energy of 25 kilo-

electron volts. An electron flood gun compensates charging effects with electrons of an

energy of 20 electron volts. The initial energy spread of the secondary ions is compensated

by a system of three electrostatic 90◦ sector fields.

Since the gallium stock of the source ran out during the measurements, the source had

to be replaced. Before the replacement the mass resolution was determined on a silicon

wafer as m/FWHM ≈ 300 at m = 28 amu/z. The mass resolution is defined as ratio

between the mass m and the full width at half maximum (FWHM) of the corresponding
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peak in the mass spectrum. With the new source the mass resolution is m/FWHM ≈ 420

at m = 28 amu/z.

Of all the samples mass spectra of cations and anions in the mass range of 1 amu/z to

400 amu/z are acquired at several sample sites. The scanning size is A = (120 µm)2. The

extractor current of the ion source is maintained at 1.5 µA corresponding to a primary

ion current of below one nanoampère in unpulsed mode. The acquisition time is usually

five minutes.

The primary ion dose D can be calculated with the primary ion current I, the acqui-

sition time t, the scanning size A, the repetition frequency f , the pulse length ∆t and the

elementary charge e = 1.6 · 10−19 C by

D =
Itf∆t

eA
. (38)

Here it is I ≈ 10−9 A, t = 300 s, f ≈ 104 Hz and ∆t = 12 · 10−9 s. Hence the primary ion

dose

D ≈ 2 · 1012 cm−2 (39)

lies well in the regime of static analysis (see equation (2)).

To see whether the surfaces of the dental implant materials are contaminated, they are

also examined after sputtering with the unpulsed primary ion beam. For sputtering the

scanning size is augmented to A = (240µm)2 to exclude the influence of gating effects on

the measurements. When sputtering a surface one does not obtain a crater with vertical

walls. Instead, there is a transition region at the edges from the crater ground to the

unsputtered surface. To obtain a measurement only from the crater ground, one has to

chose the scanning size for analysis smaller than the one for sputtering.

In the protein films, depth profiles are acquired. Therefore the following two steps are

alternated:

1. Acquisition of a mass spectrum as described above.

2. Unpulsed sputtering of the same sample site for five seconds with 1.44 square mil-

limetres scanning size. This is the largest possible scanning size. It was chosen to

obtain a slow removal of the protein layer.

Here only mass spectra of cations are acquired, because according to Wagner et al. [31]

the spectra of anions do not allow a discrimination between different proteins, since they

contain only signals of the unspecific protein backbone (mainly CN− and CNO−).

4.4 Fluorescence microscopy

The samples are imaged using an epifluorescence microscope “Axioskop 2 mot” (Carl

Zeiss, Germany) equipped with a CCD camera “AxioCam HRc” (Carl Zeiss, Germany).

The samples are illuminated by a mercury lamp with a filter transmitting light with

wavelengths of 450 nm to 490 nm. Fluorescence emission of the sample is detected for

wavelengths longer than 515 nm. This setup suits well the fluorescence properties of the

BSA fluorescein conjugate, because its maximum exciting and emission wavelengths are

494 nm and 520 nm (according to the manufacturer Molecular Probes, USA).
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4.5 Scanning force microscopy

Measurements are carried out on a “Molecular Force Probe MFP-3D” scanning force

microscope (Asylum Research, USA). The samples are imaged in air in contact mode

with constant force acting on the cantilever tip. Scanning areas are varied between fifteen

micrometres by fifteen micrometres and two micrometres by two micrometres.

4.6 Determination of amylase activity

The activity of amylase immobilized on silicon substrates is determined by the group of

Dr. Christian Hannig, Universitätsklinikum Freiburg, Germany, with a method described

in [13]. For these experiments silicon substrates with 25 square millimetres surface area

are used. They are cleaned with piranha solution for fifteen minutes and rinsed with

bidistilled water. Proteins are solved in ten millimolar phosphate buffer solutions with

pH 7.4 at molarities of about 5 · 10−5 mol per litre. On one sample only amylase is

adsorbed for two hours. A second sample is given into a lysozyme solution for two hours,

rinsed with buffer solution and given into an amylase solution afterwards for another two

hours. The samples are rinsed three times with bidistilled water and dried with argon

after the last adsorption step. Then they are sent to Freiburg in micro centrifuge tubes

for activity measurements.

The determination of amylase activity is based upon its ability to directly hydrolyse

the synthetic trisaccharide 2-chloro-4-nitrophenyl-4-O-β-D-galactopyranosylmaltotrioside

(GalG2CNP) without any auxiliary enzymes. One product of this reaction is aglycone 2-

chloro-4-nitrophenolate (CNP). According to [13], the formation of CNP is stoichiometric

with respect to incubation time and occurs at a constant rate. CNP is detected photomet-

rically by its absorption at a wavelength of 405 nanometres. The samples are incubated

for 10 minutes in 300 microlitres test solution at a temperature of 25 ◦C. The test solution

contains five millimol GalG2CNP per litre and is buffered at pH 6.0. Immediately after

removal of the sample, the absorption is read against reagent blank at 405 nanometres.

One unit of amylase activity is defined as hydrolytic production of 1 micromol CNP per

minute. The absorbance A0 of one micromol CNP in the given experimental setup can

be determined independently. Thus the activity a can be calculated from the measured

change in absorbance within ten minutes ∆A:

a =
∆A

10A0

. (40)

With the known surface S (25 mm2) of the samples, the immobilized activity per square

centimetre of sample surface can be calculated as

a

S
=

∆A

2.5 cm2A0

(41)

4.7 Data analysis

The mass spectra are acquired and calibrated with the software CADENCE (version 2.0,

Physical Electronics, USA). A newer version of the same software (WinCadence 3.7.1)
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is used to export the data to unit mass mass spectra in ASCII format. These are anal-

ysed in a Matlab 6.5 environment (The MathWorks, USA) with functions written for

this purpose, which can be found in appendix A. First the mass spectra are extracted

from the WinCadence export files with the functions “einlesen”, “voll” and “matrix”.

A background spectrum can be subtracted (“silanweg”) and peaks related to amino acid

fragments can be selected (“auswahl”) from the mass spectra. Principal component analy-

sis with an algorithm based upon the PCA tutorial by Shlens [29] or discriminant principal

component analysis with an algorithm based upon Yendle’s article [37] are performed us-

ing the functions “pca” or “dpca”. The results are plotted by the function “plotpc2d”. In

addition to the data points, “plotdpc2dmitellipse2” also plots probability ellipses around

groups in the scores plot. Therefore the function “ellipse” is used. To calculate the size

of the probability ellipses, it needs the critical value of an F distribution provided by the

function “Fdistribution”, which contains critical values taken from the “User’s guide to

principal components” [17]. The quality of the DPCA models is evaluated by leave-one-

out tests. The left out measurements are assigned to a group either by their projection’s

position with respect to the probability ellipses of the groups (function “loo”) or by the

euclidean distance of the projections to the groups’ centres of gravity (function “loo3”).

New spectra can be projected into existing scores plots using the functions “pcaprojek-

tion” and “dpcaprojektion”. They can be assigned to existing groups with the function

“zuordnen”.
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Figure 18: Intensities of cations in mass spectra acquired on dental materials

5 Results

5.1 ToF-SIMS of dental implant materials

Comparison of the mass spectra of the dental implant materials FAT and FAW before and

after sputtering shows a significant decrease in intensity of the peaks assigned to organic

compounds. Hence spectra acquired without prior sputtering are distorted by organic

surface contaminants. These can be compounds not removed by the cleaning process or

molecules adsorbed between cleaning and the analysis by ToF-SIMS. In the following,

only spectra acquired with prior sputtering are used for analysis.

To compare the surface composition of the dental implant materials and bovine tooth

enamel, mass spectra of cations and anions are acquired at three sites on samples of the

implant materials FAT and FAW as well as bovine tooth enamel. The peaks showing the

strongest signals in the mass spectra are selected and scaled by the total intensity of the

selected peaks to compensate for a possible shift in the total secondary ion yield. Using

their masses and isotope patterns, the peaks are assigned to the ions that caused them.

In the mass spectra of positively charged ions, six peaks show a noteworthy intensity.

These are shown in figure 18. Comparing the two implant materials, FAW shows much

higher intensities for the aluminium and potassium signals. The other four cations show

comparable intensities for the two materials with a slightly stronger sodium signal and

a little weaker phosphorus, calcium and strontium signals for FAW than for FAT. In

contrast to the implant materials the enamel sample does not show any detectable signal

for aluminium or strontium and a much weaker one for potassium. The signals of calcium

and phosphorus are a little stronger and the one of sodium is slightly weaker than for the

implant materials.
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Figure 19: Intensities of anions in mass spectra acquired on dental materials

In the mass spectra of negatively charged ions, the peaks of four components of the

samples can be identified. Their intensities are shown in figure 19. Here the two implant

materials show quite similar intensities. The fluorine signal is a little stronger and the

phosphorus (as in the spectra of cations) and chlorine signals are a little weaker for FAW

than for FAT. The bovine enamel sample does not show any strongly differing behaviour

either. Its fluorine signal is slightly weaker while the phosphorus and chlorine signals are

stronger than for the implant materials. All the samples show similar intensities for the

oxygen signal.

Due to the different matrix effects and ionisation probabilities, no exact conclusions

to the surface composition of the samples can be drawn from these data. Anyway it

can be stated that all three materials resemble in their main components. They contain

principally sodium, phosphorus, potassium, calcium, oxygen, fluorine and chlorine. In

the implant materials aluminium and strontium are also abundantly present. Strontium

is incorporated in the implant materials to make them visible in X-ray imaging. The

aluminium originates probably from the polishing of the samples.

5.2 ToF-SIMS of protein films on silanised substrates

Regarding the mass spectra of different protein films, there are no clearly visible differences

between the different films. In all the spectra of negative ions the oxygen (16 amu/z),

hydroxide (17 amu/z), carbon (12 amu/z) and hydrocarbon anions (13 amu/z) as well as

the cyanide anion (CN− : 26 amu/z) and C2H
− (25 amu/z) with much weaker intensities

are the only clearly visible peaks (see figure 20).

In the spectra of positive ions the peak of the silicon cation (28 amu/z) is the most
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Figure 20: Exemplary mass spectra of anions of protein films adsorbed to silane

intense one. This is probably due to polymerised silane that was not removed from the

surface by the cleaning step in ethanol. In the mass range from 27 amu/z to 70 amu/z

nearly every mass shows a peak of noteworthy intensity. Furthermore up to 200 amu/z

the density of peaks stays large (see figures 21 and 22).

Some sample sites exhibit a strong peak at 23 amu/z due to sodium from the buffer

solution. At these sites no spectra for analysis are acquired because according to Wagner

et al. [31] sodium causes a strong matrix effect that might distort the measurements.

For principal component analysis only the mass range between 1 amu/z and 200 amu/z

is used. The spectra are scaled by their total intensity to compensate for changes in the

total number of ions detected per spectrum.

By doing DPCA on the spectra of cations a discrimination of samples coated with

lysozyme or BSA by their scores is hardly possible. Figure 23 shows the loadings and scores

plots of three samples each coated with lysozyme or BSA on a silane and glutardialdehyde

layer. On each sample mass spectra of cations were acquired at four or six sites. In

addition to these data, spectra of cations acquired on three samples treated with a 1:1

(weight:weight) mixture solution of the two proteins are projected into the scores plot.

Around the data points of lysozyme and BSA spectra, 95%-probability ellipses are drawn.

As the ellipses show a large overlap, these results cannot be used to discriminate between

the two proteins. In the loadings plot the masses showing strongest influence on the first

discriminant principal component are labeled with their mass to charge ratio in atomic

mass units per charge number (amu/z). One of these is 28 amu/z, the mass to charge
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Figure 21: Exemplary mass spectra of cations of protein films adsorbed to silane

Figure 22: Exemplary mass spectra of cations of protein films adsorbed to silane
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Figure 23: DPCA results of two proteins adsorbed to silane from buffer solution

ratio of the silicon cation. To exclude the influence of silicon from polymerised silane or

from the substrate on the analysis, a mean mass spectrum of cations acquired on a sample

coated only with silane is subtracted from the protein mass spectra.

The new results after subtraction of the silane mass spectrum are shown in figure 24.

There still exists a large overlap of the probability ellipses.

To improve the results, in the next step only masses corresponding to intense peaks of

amino acid mass spectra are taken into account. The selection was taken from the work of

Lhoest et al. [20] and is listed in table 1. At the masses 30 amu/z and 45 amu/z there are

also peaks visible in the mass spectra caused by the substrate, namely 30Si+ and 28SiOH+

that overlap with the peaks of amino acid fragments. Hence these masses are not used

for analysis of protein films on silicon substrates.

In the new scores plot the overlap of the probability ellipses is a lot smaller than

before (see figure 25) but there still is a large spread within the groups. Furthermore,

the projections of the mass spectra of samples treated with a mixture of both proteins

are spread all over the probability ellipses of the two proteins. This suggests that the

composition of these samples is very variable. In the loadings plot the masses 102 amu/z

and 110 amu/z show the strongest positive influence on the first discriminant principal

component, while the masses 60 amu/z, 130 amu/z and 87 amu/z show the strongest

negative influence. The former are assigned to the amino acids glutamic acid and histidine

and the latter are assigned to serine, tryptophane and asparagine (see table 1).

The relative abundances of the different amino acids in lysozyme, BSA and amylase

are plotted in figure 26. The values were taken from the work of Lhoest et al. [20] for

lysozyme and BSA and from the Protein Data Bank [1] for amylase.
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Figure 24: Results of DPCA after subtraction of a silane spectrum of two proteins ad-

sorbed to silane from buffer solution

Figure 25: Results of DPCA after peak selection of two proteins adsorbed to silane from

buffer solution
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mass in amu/z fragment corresponding amino acid

30∗ CH4N glycine

43 CH3N2 arginine

44† C2H6N alanine

45∗ CHS cysteine

60 C2H6N0 serine

61 C2H5S methionine

68 C4H6N proline

69† C4H5O threonine

70 C3H4NO asparagine

C4H8N proline

71 C3H3O2 serine

72 C4H10N valine

73 C2H7N3 arginine

74 C3H8NO threonine

81 C4H5N2 histidine

82 C4H6N2 histidine

83 C5H7O valine

84 C4H6NO glutamine, glutaminic acid

C5H10N lysine

86† C5H12N leucine, isoleucine

87† C3H7N2O asparagine

88† C3H6NO2 asparagine,aspartic acid

98 C4H4NO2 asparagine

100 C4H10N3 arginine

101 C4H11N3 arginine

102 C4H8NO2 glutaminic acid

107 C7H7O tyrosine

110 C5H8N3 histidine

112 C5H8N3 arginine

120 C8H10N phenylalanine

127 C5H11N4 arginine

130 C9H8N tryptophane

131 C9H7O phenylalanine

136 C8H10NO tyrosine

159 C10H11N tryptophane

170 C11H8NO tryptophane

Table 1: Selected amino acid fragment peaks. The peaks marked with ∗ are omitted for

samples prepared on silicon and the ones marked with † for samples prepared on FAT or

FAW because of their overlap with substrate caused peaks.
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Figure 26: Relative abundances of amino acids in lysozyme, BSA and amylase

It can be seen that glutamic acid and histidine are more abundant in BSA than in

lysozyme while the opposite is true for serine, tryptophane and asparagine. The amino

acids associated to BSA show the strongest positive loadings on the first DPC, whereas

the amino acids highly abundant in lysozyme show the strongest negative loadings on the

first DPC. Therefore the loadings are consistent with the fact that BSA can be found on

the right side of the scores plot and lysozyme on the left side.

To quantify the quality of the DPCA model of the spectral data, leave-one-out-tests are

performed. When the samples are assigned to one of the two proteins by their euclidean

distance on the first DPC to the centres of gravity of the two groups, 26 out of 32 spectra

(81%) are correctly assigned. Using the probability ellipses, only 18 spectra (56%) are

correctly assigned because many spectra are projected into the overlapping region of

the two ellipses and thus cannot be assigned to one group. Hence a way for better

discrimination of the sample types by reducing the spread between the mass spectra of

one protein, has to be found.

Probably the spread within the sample types is due to different amounts of polymerised

silane on the sample surfaces. To check this, protein films shall be adsorbed to unsilanised

silicon wafers.

5.3 ToF-SIMS of protein films on silicon substrates

To the naked eye the mass spectra acquired from protein films on silicon do not signifi-

cantly differ from those acquired from protein films on silane. The intensity of the silicon

peak at 28 amu/z is even stronger than in the spectra of protein films on silane (see figure

27). Now it can only be caused by the silicon from the substrate. Since the sampling depth
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Figure 27: Comparison of mass spectra of cations from lysozyme films on silane or silicon

of ToF-SIMS is only a few Ångströms, no silicon should be detected through a compact

protein layer of several nanometres thickness. Probably the protein film is porous due

to removal of part of the protein in the rinsing step. In the higher mass region different

peaks can be found in the spectra obtained from protein adsorbed to silicon, but still

there are no characteristic peaks for the different proteins (see figure 28).

5.3.1 Proteins solved in water

First the spectra of proteins solved in water are treated. On four samples coated with

lysozyme, BSA or amylase, mass spectra of cations are acquired at four sites. The spectra

are unit-mass binned and amino acid related peaks (see table 1) are selected before doing

discriminant principal component analysis. Additional silicon substrates are treated with

solutions of 1:1 (weight:weight) mixtures of two of the three proteins or with a solution of a

1:1:1 (weight:weight:weight) mixture of all three proteins solved in water. On two samples

of each mixture type, cation mass spectra are acquired at four sites. These undergo the

same pretreatment as the spectra of pure protein films.

The results of DPCA are shown in figure 29. In the scores plot there is only little

overlap of the 95% probability ellipses of lysozyme and amylase, while BSA is completely

separated from the two other sample types. The mass spectra acquired on mixture treated

samples are projected into the scores plot. The position of the ternary mixture and the

mixture of lysozyme and BSA suggest that all proteins have adsorbed in these cases

because the projections are found between the regions of the pure protein spectra. On
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Figure 28: Comparison of mass spectra of cations from lysozyme films on silane or silicon

Figure 29: Results of DPCA on spectra of three proteins adsorbed to silicon from water
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the other hand the projections of the mixture of lysozyme and amylase are very close

to the lysozyme region and the projections of the mixture of amylase and BSA lie (with

exception of one spectrum) completely in the probability ellipse of BSA. It can thus be

presumed that in these two cases there is a preferential adsorption of lysozyme and BSA

compared to amylase.

In the loadings plot the masses 60 amu/z, 87 amu/z and 170 amu/z show the strongest

negative values on the first DPC. These masses are assigned to the amino acids serine,

asparagine and tryptophane (see table 1). All of them are most abundant in lysozyme

(see figure 26) causing lysozyme spectra to be projected to the left side of the scores plot.

The mass 110 amu/z (histidine) has the highest positive loading on the first DPC. Since

histidine is most abundant in BSA, this protein is projected to the right side of the scores

plot. The positive side of the second discriminant principal component is dominated by

proline (masses 68 amu/z and 70 amu/z) which is present in BSA and amylase at nearly

equal proportions. Since the masses with strongest negative influence on the second DPC

84 amu/z (glutamine, glutaminic acid, lysine) and 102 amu/z (glutaminic acid) belong to

amino acids most abundant in BSA, this protein is found in the lower part of the scores

plot and amylase is found in the upper part.

Leave-one-out tests of the DPCA model show the following results: If spectra are

assigned by their euclidean distances on the first two discriminant principal components,

47 out of 48 spectra (98%) are associated with the correct group. Using the probability

ellipses for assignment, still 43 spectra (90%) are correctly recognised. This shows that

the data are well represented by the DPCA model.

5.3.2 Proteins solved in 100 millimolar buffer solution

When the proteins are solved in 100 millimolar buffer solution, many sample sites exhibit

a strong signal at 23 amu/z caused by sodium adsorbed from the buffer solution. Because

of the matrix effect caused by sodium, spectra for analysis are acquired only at sites with

small sodium concentrations but these are difficult to find. Four samples each are coated

with lysozyme or BSA and four spectra of cations are acquired on each sample. The

spectra are unit-mass binned and amino acid related masses are selected before doing

DPCA.

In the scores plot (see figure 30) the two sample types are separated on the first

discriminant principal component but the 95%-probability ellipses of BSA and lysozyme

coated samples overlap to a large extent. The negative side of the first principal component

is most strongly influenced by the masses 159 amu/z, 130 amu/z, 170 amu/z and 60 amu/z.

These are linked to fragments of the amino acids tryptophane and serine (see table 1),

which are more abundant in lysozyme than in BSA (see figure 26). On the other hand the

masses 110 amu/z and 82 amu/z show the strongest positive loading. They are linked to

histidine which is more abundant in BSA than in lysozyme. This explains why lysozyme

can be found mostly in the negative range and BSA in the positive range of the first DPC

in the scores plot.

In addition to the pure protein films, mass spectra acquired on two samples treated

with a solution of lysozyme and BSA of equal mass concentrations in 100 millimolar buffer

solution are projected into the scores plot. They are spread widely within the probability
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Figure 30: Results of DPCA of two proteins adsorbed on silicon from 100 mM buffer

solution

ellipses of lysozyme and BSA.

The leave-one-out-test shows that in this case only 19 out of 32 spectra (59%) are

assigned to the right protein using the probability ellipses. Due to the large within group

spread, many of the spectra are projected into the overlap of the two ellipses preventing an

unambiguous assignment. Using the euclidean distance on the first DPC, 28 spectra (88%)

are correctly assigned. So the data are not very well represented by the two-dimensional

DPCA model. Probably the high spread within the groups is caused by differing amounts

of buffer salts remaining on the sample surfaces.

5.3.3 Proteins solved in 10 millimolar buffer solution

In the following experiments instead of a 100 millimolar buffer solution of sodium di-

(hydrogen)phosphate (NaH2PO4) and disodium hydrogenphosphate (Na2HPO4), a ten

millimolar buffer solution with pH 7.4 is used. Onto twelve silicon substrates lysozyme,

amylase or BSA are adsorbed from this ten millimolar buffer solution. Protein concentra-

tions are about 10−4 mols per litre. On each sample mass spectra of positively charged

ions are acquired at four sites. The spectra are unit-mass binned and peaks resulting

from amino acid fragments (see table 1) are selected before doing discriminant princi-

pal component analysis. The resulting scores and loadings plots are shown in figure 31.

In the scores plot a very good separation of the different sample types is visible. This

supports the assumption that in the preceding experiments with proteins adsorbed from

buffer solution the mass spectra were strongly influenced by buffer salts. Now due to the
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Figure 31: Results of DPCA of three proteins adsorbed on silicon from 10 mM buffer

solution

smaller buffer concentration, a better removal of the buffer salts is possible. Hence the

spread within the groups in the scores plot is largely reduced. Spectra acquired on nine

samples treated with mixture solutions of two of the three proteins are projected into the

scores plot. In the protein solutions used in this case equal molarities (approximately

10−5 mol/l) of two proteins are present. The projections of the mixtures of lysozyme and

BSA can be found in a small region closer to the lysozyme probability ellipse than to the

one of BSA indicating that more lysozyme than BSA adsorbed from the solution. With

exception of one outlier the projections of mixtures of lysozyme and amylase are situated

closer to lysozyme than to amylase. Thus it is assumed that mostly lysozyme adsorbed

in this case. The projections of the three samples treated with mixtures of amylase and

BSA are clearly differing from one another. Depending on the sample, the projections lie

either close to the BSA region or close to the amylase region or between them. Hence the

concentration ratio of the two proteins at the sample surface differs significantly between

the three samples. Thus the co-adsorption process of amylase and BSA seems to be more

sensitive to external influences like contaminations or temperature than the co-adsorption

processes of the other mixtures.

The masses 87 amu/z and 60 amu/z show the strongest negative loadings on the first

and second discriminant principal component. They are associated to the amino acids

asparagine and serine (see table 1). These have highest abundance in lysozyme (see figure

26) which is thus projected in the lower left part of the scores plot. The positive side of

the first DPC is most strongly influenced by the masses 43 amu/z (arginine), 71 amu/z

(serine) and 68 amu/z (proline). The former two are most abundant in lysozyme and the

latter one in BSA. But all of them are also highly abundant in amylase explaining its

position on the right side of the scores plot. The amino acids phenylalanine (120 amu/z),

tyrosine (107 amu/z) and glutamine, glutamic acid and lysine (84 amu/z) are all highly
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Figure 32: Projections of mass spectra of proteins adsorbed to silicon after sputtering

into the scores plot. The arrows indicate the direction of increased sputter time.

abundant in BSA. With their strongly positive loadings on the second DPC they project

the BSA spectra in the upper part of the scores plot.

The leave-one-out test confirms the good fitness of the DPCA model to represent the

data. Using the euclidean distance on the first two DPC for assignment, all 48 spectra

are correctly recognised. With the 95% probability ellipses, 46 spectra (96%) are assigned

to the correct protein.

Similarly prepared samples of the three proteins on silicon substrates are sputtered

with the unpulsed primary ion beam. Mass spectra of cations are acquired after 0, 5

,10, 15 and 20 seconds of sputtering. Using the primary ion current (I ≈ 10−9 A), the

maximum sputter time (t = 20 s), the elementary charge (e = 1.6 · 10−19 C) and the

scanning size (A = 1.44 · 10−2cm2), the maximum primary ion dose D can be estimated

as

D =
It

eA
≈ 9 · 1012cm−2. (42)

These spectra are unit-mass binned and peak selection is performed before projecting

them into the scores plot built with the preceding DPCA model. The projections are

shown in figure 32. The arrows indicate the direction of increasing sputter time. The

projections of samples of all three proteins quickly approach the same region in the scores

plot. Thus even after short sputtering the protein layers are destroyed to a degree that

makes it impossible to recognize the protein by DPCA. In the corresponding mass spectra,

the intensities of all peaks with exception of the ones caused by the substrate are strongly

reduced by sputtering.
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Figure 33: Projections of mass spectra of protein double layers adsorbed to silicon into

the scores plot

Next it is tried to prepare double layers of two different proteins on silicon substrates.

Therefore, after adsorption of the first protein, the samples are rinsed and given into a

solution of the second protein for two hours. Protein molarities are approximately 10−4

mols per litre buffer solution. As before, a ten millimolar phosphate buffer solution is

used. Two samples are prepared for each of the six possible combinations of the three

proteins and on each sample mass spectra of cations are acquired at four different sites.

The mass spectra are unit-mass binned and amino acid related peaks are selected. Then

they are projected into the scores plot of the DPCA model created with the mass spectra

of single component protein layers on silicon. The projections and the positions of the

single component spectra on the first two discriminant principal components are shown

in figure 33.

The projections can be interpreted as follows:

Amylase on lysozyme: These spectra are projected very closely to or into the lysozyme

probability ellipse. Hence very little or no amylase adsorbs to the lysozyme layer or

it is only loosely bound and removed in the rinsing step.

BSA on lysozyme: Again the projections are situated close to the lysozyme region

suggesting that BSA adsorbs only in little amounts on the lysozyme layer.

Lysozyme on BSA: These projections show a large spread but they are all at approxi-

mately equal distances from the probability ellipses of lysozyme and BSA. Thus the

two proteins are detected at equal amounts. This can be caused by mixing of the
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two proteins in the second adsorption step or by a not tightly packed lysozyme layer.

The latter would make the detection of BSA via holes possible. A non homogeneous

lysozyme layer can also explain the large spread of the data points.

BSA on amylase: Since these spectra are projected closely to the amylase region, it is

assumed that only little amounts of BSA adsorb onto the amylase film.

Lysozyme on amylase: Within the projections of these spectra the largest spread is

found. Their positions range nearly from the lysozyme probability ellipse to the

amylase ellipse. Thus these samples present a very inhomogeneous surface compo-

sition and there are large local differences in the amount of lysozyme adsorbed.

Amylase on BSA: These projections are situated close to the amylase region. Hence

amylase adsorbs to the BSA layer and forms a relatively compact layer masking

BSA from detection by ToF-SIMS.

The results for the adsorption of amylase on lysozyme are confirmed by amylase ac-

tivity measurements. The group of Dr. Christian Hannig, Universitätsklinikum Freiburg,

determined the immobilized activity of amylase adsorbed directly to silicon as 0.028 units

per square centimetre. The activity measured for amylase adsorbed to lysozyme coated

silicon is only ten percent as high (0.0028 U/cm2). This is compared to the amount of

amylase estimated by the DPCA projections of the mass spectra of samples treated first

with lysozyme and then with amylase solution. Figure 33 shows that lysozyme and amy-

lase coated samples are separated by the first discriminant principal component. Thus

the amylase fraction of a sample’s surface composition famy is estimated by the distance

of its projection on the first axis to the centres of the amylase (damy) and lysozyme (dlys)

probability ellipses:

famy =
dlys

dlys + damy

. (43)

Hence it is assumed that a mass spectrum projected into the centre of the lysozyme ellipse

(dlys = 0) does not contain any amylase while a spectrum projected into the centre of

the amylase ellipse (damy = 0) is caused by a pure amylase film. Calculating the surface

fraction of amylase for all eight spectra of amylase adsorbed onto lysozyme a mean value

of famy = (16 ± 5)% is obtained. The error is calculated by the standard deviation

of the values for different spectra. Bearing in mind the difficulties in determining the

activity of immobilized enzymes caused by possible denaturation or obstructed substrate

diffusion and the problems of quantification for secondary ion mass spectra due to differing

ionization probabilities, the amylase activity fraction of ten percent lies remarkably close

to the surface fraction estimated by ToF-SIMS and DPCA.

Unfortunately it was not possible to measure the activity of surface immobilized

lysozyme. Probably it is deactivated by the adsorption or the subsequent drying. To

determine the amount of BSA adsorbed to the samples, fluorescence microscopy is used.

The obtained results are described in section 5.4.

The results of samples coated consecutively with two proteins can be correlated with

the ones obtained from binary protein mixtures. From a mixture of lysozyme and amylase,

little amounts of amylase adsorb to the silicon surface. Equally, only very small quantities
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Figure 34: Projections of mass spectra of sputtered protein double layers adsorbed to

silicon into the scores plot. The arrows indicate the direction of increased sputter time.

of amylase adsorb to a surface coated with lysozyme. Thus in both cases lysozyme hinders

the adsorption of amylase. A similar but weaker effect can be observed for BSA and

lysozyme. More lysozyme than BSA is adsorbed from the mixture, and BSA does not

adsorb very well on a lysozyme coated surface. Hence lysozyme hinders the adsorption of

BSA in both experiments. Due to the high spread in the data of amylase BSA mixtures,

these cannot be compared to the data from the double layer experiments.

On the samples coated consecutively with two proteins, mass spectra of cations are

also acquired after sputter times of zero to 35 seconds. The mass spectra are unit-mass

binned and amino acid related peaks are selected. Then they are projected into the scores

plot of the DPCA model created with the mass spectra of single component protein layers

on silicon (see figure 34). The arrows indicate the direction of increasing sputter time.

For all samples the projections develop directly to the same region under sputtering.

This is the same region, the projections of single protein layers developed to in figure

32. Thus sputtering destroys rapidly the whole protein layer making a discrimination

of proteins after sputtering impossible. In particular the assumed double layer structure

of the protein films cannot be detected. The experiments were performed twice for each

sample type giving essentially the same results. For clarity figure 34 shows only the results

of one series of experiments.
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Figure 35: Fluorescence microscopy images of pure BSA fluorescein conjugate (left) and

a mixture of BSA and lysozyme (right) adsorbed on silicon

Figure 36: Fluorescence microscopy images of BSA fluorescein conjugate adsorbed to

silane (left) and to silicon without rinsing of the sample after adsorption (right)
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5.4 Fluorescence microscopy of protein films on silicon

Figures 35 and 36 show typical fluorescence microscopy images obtained from different

samples. If the protein is adsorbed to silicon and the samples are rinsed after adsorption

only few fluorescence spots are visible (see figure 35). The sample treated with a mixture

of BSA fluorescein conjugate and lysozyme shows more fluorescence spots than the sample

treated only with BSA fluorescein conjugate. Possibly most of the protein is removed in

the rinsing step. This would also explain the strong substrate signal in the mass spectra

acquired on similarly prepared samples. The images confirm the theory that BSA adsorbs

to the substrate from a protein mixture as well as from a single protein solution. There

might be different explanations for the stronger fluorescence shown by the mixture treated

samples. It could be caused by possibly non-identical rinsing times removing more or less

of the protein layer. The mixture of the two proteins might form a denser layer more

difficult to remove by rinsing. Or the presence of lysozyme might enhance the fluorescence

yield of fluorescein.

On the sample where the BSA fluorescein conjugate was adsorbed to silane, the flu-

orescence is only visible at a few spots on the sample surface, too. As the previous ones

this sample was rinsed after protein adsorption. But since the proteins should bind cova-

lently to the glutardialdehyde (see figure 16), it should not be possible to remove them

by rinsing. There are the following possible explanations for the weak fluorescence: The

fluorophore could loose its fluorescence properties by conformational changes of BSA upon

adsorption. Or the protein does not bind covalently in the first place and can thus be

removed by rinsing.

If the samples are not rinsed after protein adsorption to silicon, a strong fluorescence

is visible. This supports the idea that most of the protein is removed from the silicon

substrate in the rinsing step. The structures visible in the fluorescence image are probably

crystallised buffer salts.

To find out whether they are covered with protein or not, the sample surfaces are

investigated with scanning force microscopy in contact mode. On all of the rinsed samples

globular structures with height differences of approximately four nanometres are visible

covering most of the surface. The structures vary in their lateral size. In addition, larger

structures with some tens of nanometres height and up to some hundreds of nanometres in

diameter are found on the surface. Probably the small structure is a protein film, while the

larger ones are protein agglomerates. As examples, images obtained on the two samples

treated with a solution of BSA fluorescein conjugate and lysozyme in buffer solution are

shown in figures 37 and 38. In the centre of figure 37 a smaller region was scanned for

ten minutes with higher frequency and higher force than usual. Afterwards the surface

level lies about two nanometres deeper in this scratched area because the protein film has

been removed.

On the sample that was not rinsed after protein adsorption larger structures are visible

(see figure 39). Their lateral size is some micrometres and their height is some hundreds

of nanometres. These are probably crystallized buffer salts. The protein layer should be

found underneath the buffer crystals and is not detectable by scanning force measure-

ments.

From the scanning force microscopic images it can be concluded that most of the
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Figure 37: Scanning force microscope image of a silicon sample treated with a solution

of BSA fluorescein conjugate and lysozyme rinsed after protein adsorption. The lower

region in the centre of the image was scratched with the cantilever tip

Figure 38: Scanning force microscope image of a silicon sample treated with a solution of

BSA fluorescein conjugate and lysozyme rinsed after protein adsorption
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Figure 39: Scanning force microscope image of a silicon sample treated with a solution of

BSA fluorescein conjugate not rinsed after protein adsorption

samples’ surfaces is covered with a protein layer even after rinsing. Thus the fluorescence

patterns on the samples do not reflect the protein distribution. Presumably the fluores-

cence yield of fluorescein is reduced due to interactions which can occur when the protein

adsorbs to the surface and changes its conformation.

5.5 ToF-SIMS of protein films on dental implant materials

Single protein films are prepared on substrates of FAT and FAW. Of each protein three

samples per substrate type are made. Mass spectra of cations are acquired by ToF-SIMS

at four sites on each sample. Regardless of the substrate or protein used the spectra have

a similar appearance. As an example a mass spectrum acquired on BSA coated FAT is

shown in figure 40. A strong signal at 40 amu/z (calcium) and weaker ones at 23 amu/z

(sodium) and 88 amu/z (strontium) are caused by the substrate. Additionally at nearly

every mass up to 200 amu/z peaks caused by protein fragments or organic contaminants

are visible. The visibility of substrate caused peaks shows that once again the proteins

are not closely packed on the surface. The mass spectra are unit-mass binned and amino

acid related peaks are selected. Of the peaks listed in table 1, the ones at 44 amu/z, 86

amu/z, 87 amu/z, 88 amu/z and 69 amu/z overlap with peaks caused by the substrate

(44Ca, 86Sr, 87Sr and 88Sr) or by the primary ions (69Ga). Hence these masses are not

taken into account for multivariate analysis.

Performing DPCA on the data acquired on FAT substrates leads to the results shown

in figure 41. In the scores plot the 95%-probability ellipses of the three proteins are well

seperated. In addition to the data acquired on FAT, spectra acquired on FAW substrates

are projected into the scores plot using the loadings calculated with the FAT data. The

projections lie very close to or within the probability ellipses of the corresponding protein.

This shows that the intensity patterns of the selected peaks are only weakly influenced
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Figure 40: Mass spectrum of cations acquired on a FAT substrate coated with BSA

by the substrate.

In the loadings plot the masses 130 amu/z, 170 amu/z, 159 amu/z, 60 amu/z and 61

amu/z have the strongest negative values on the first discriminant principal component.

They are caused by fragments of tryptophane, serine and methionine (see table 1). The

former two are most abundant in lysozyme while methionine is most abundant in amylase

but can be found to nearly equal amounts in lysozyme as well (see figure 26). Together

these masses cause the lysozyme spectra to be projected to the left of the scores plot.

The highest positive loadings on the first DPC are achieved by the masses 84 amu/z

(glutamine, glutamic acid and lysine), 82 amu/z (histidine), 120 amu/z (phenylalanine)

and 110 amu/z (histidine). All the corresponding amino acids but phenylalanine are most

abundant in BSA projecting its spectra to the right of the scores plot. Finally, fragments

of proline (68 amu/z), methionine (61 amu/z) and tyrosine (107 amu/z) have the strongest

negative loadings on the second DPC. Since they are highly abundant in amylase, spectra

of this protein are projected in the lower part of the scores plot.

A leave-one-out test confirms the quality of the DPCA model. Using the euclidean

distance on the first two DPC to the centres of gravity of the protein groups for assignment,

all 36 spectra are correctly assigned. With the probability ellipses, still 94% of the spectra

are assigned to the right protein.

By performing DPCA on the spectra of proteins adsorbed to FAW similar results are

obtained (see figure 42). Again the probability ellipses of the three proteins are well

separated in the scores plot and the projections of spectra acquired on protein films on

FAT lie mostly within the probability ellipse of the right protein.
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Figure 41: DPCA results of proteins adsorbed to FAT from 10 mM buffer solution

Figure 42: DPCA results of proteins adsorbed to FAW from 10 mM buffer solution
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The loadings plot shows that the positioning of the proteins in the scores plot is mainly

determined by the same amino acid fragments as before. Only two new fragments of sig-

nificant loadings occur. On the negative side of the first discriminant principal component

arginine (73 amu/z), which is most abundant in lysozyme, supports its positioning on the

left side of the scores plot. Cysteine (45 amu/z) contributes with its negative loading

on the second DPC in the positioning of amylase because it is highly abundant in this

protein.

In the leave-one-out test the DPCA model for FAW substrates performs slightly worse

than the one for FAT substrates. Using the euclidean distance, still all 36 spectra are

correctly assigned but with the probability ellipses the percentage of spectra assigned to

the right protein is reduced to 89%.

The similarities between the DPCA results of protein layers on the two substrate

types show that very similar single component protein layers are formed on FAT and

FAW substrates.

5.5.1 Adsorption from binary protein mixtures

Substrates of FAT and FAW are also treated with solutions of binary mixtures of two of

the three proteins. Equal molarities of about 5 · 10−5 mol/l of the proteins are solved in

10 mM buffer solution at pH 7.4. After protein adsorption time-of-flight mass spectra

of cations are acquired at four sites on each sample. Of every possible binary mixture

three samples are prepared on FAT and two samples on FAW. The spectra are unit-mass

binned and amino acid related peaks are selected. They are projected into the scores

plots of the DPCA models built with single protein spectra on the respective substrates.

The resulting projections can be seen in figure 43 for FAT substrates and in figure 44 for

FAW substrates.

The spectra of protein films on FAT substrates show a relatively large spread between

different samples treated with the same type of mixture. The mass spectra of a mixture of

lysozyme and amylase are projected in a region from the lysozyme probability ellipse to the

middle between the probability ellipses of lysozyme and amylase. Thus it is assumed that

mostly lysozyme adsorbs from this mixture but the proportions of lysozyme and amylase

are different from experiment to experiment. Similarly the projections of the mass spectra

of the amylase BSA mixture lie in a region from the BSA ellipse to the middle between

the BSA and amylase ellipses. This indicates that BSA forms the major component of the

adsorbed films but their exact composition differs between the experiments. In contrast

the mass spectra of a mixture of lysozyme and BSA show less spread. They are found

closer to BSA than to lysozyme. Hence in this case BSA seems to be the major component

of the adsorbed film.

When the protein films are adsorbed to FAW substrates there are smaller differences

between the projections of mass spectra of different samples treated with the same type

of mixture. Now, with one exception, the projections of a mixture of lysozyme and

amylase are situated very close to the lysozyme probability ellipse. Thus probably only

lysozyme has adsorbed to the substrate. The mass spectra of BSA amylase mixtures are

projected close to the BSA ellipse indicating that this protein is the major component

of the adsorbed film. The projection of mixtures of lysozyme and BSA are closer to the
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Figure 43: Projections of mass spectra of binary protein mixtures on FAT

Figure 44: Projections of mass spectra of binary protein mixtures on FAW
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proteins substrate

in solution silicon FAT FAW

lysozyme more lysozyme more BSA more BSA

and BSA

amylase spread from spread from equality to spread from more to

and BSA amylase to BSA much more BSA much more BSA

lysozyme spread from more to spread from equality to much more lysozyme

and amylase much more lysozyme more lysozyme

Table 2: DPCA projection deduced compositions of protein films adsorbed from binary

mixtures

BSA ellipse than to the one of lysozyme. Thus more BSA than lysozyme is detected on

the samples. So the composition deduced from the DPCA projections of the protein films

created with binary mixtures is similar on the two dental implant materials but it differs

from the one on silicon substrates. This is not surprising, as an effect of the substrate

on protein adsorption should be expected. These results are summarized in table 2.

They suggest that BSA has the highest affinity to adsorb to the dental implant materials

followed by lysozyme while amylase has the lowest affinity. On silicon substrates lysozyme

shows the highest affinity while the relation between the ones of BSA and amylase is

varying.

5.5.2 Sputtering of single protein layers

On two other sets of samples coated with single protein films, mass spectra are acquired

after sputtering the surface with the unpulsed primary ion beam. The samples are pre-

pared like the ones used to build the DPCA model. On one sample of lysozyme, BSA and

amylase adsorbed to FAT and FAW substrates, mass spectra are acquired after sputtering

for 0, 5, 10, 15, 20, 25 and 30 seconds. This corresponds to maximum primary ion doses of

about 1013cm−2 (see equation 42). The spectra are unit-mass binned, amino acid related

peaks are selected, and the spectra are projected in the scores plots using the DPCA

models created before. The projections are shown in figure 45 for FAT substrates and in

figure 46 for FAW substrates. Under sputtering the projections move from the probability

ellipses of the respective protein into the region between the three ellipses. After short

sputtering times a recognition of the different proteins by their DPCA projections is not

possible any more. At this stage it can be seen in the mass spectra that most of the

organic material has been removed from the sample surface. The first one or two spectra

corresponding to sputtering times of five to ten seconds of samples coated with lysozyme

or BSA show a development heading to the amylase probability ellipse. Probably the

different amino acids are not equally destroyed by sputtering. Thus amino acids related

to lysozyme and BSA can be destroyed before the ones related to amylase. This makes

the spectra more similar to amylase spectra and explains the development of sputtered

lysozyme and BSA in the scores plot.
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Figure 45: Projections of sputtered protein films on FAT

Figure 46: Projections of sputtered protein films on FAW
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Figure 47: Projections of protein double layers adsorbed to FAT substrates

5.5.3 Consecutive adsorption of two proteins

As on the silicon substrates, the consecutive adsorption of two proteins is studied on the

dental implant materials, too. Therefore the substrates are rinsed with buffer solution

after the first adsorption step. Then they are put into a solution of the second protein.

Proteins are solved at molarities of about 5 ·10−5 mols per litre buffer solution. The latter

is a ten millimolar phosphate buffer as before. Two samples are prepared for each of

the six possible combinations of two proteins on the two substrate types. Mass spectra of

cations are acquired at four sites on each sample. At one site on each sample mass spectra

are also acquired after sputtering the surface with the unpulsed primary ion beam for five

to thirty seconds. This corresponds to maximum primary ion doses of about 1013cm−2

(see equation 42). The mass spectra are unit-mass binned and amino acid related peaks

are selected. Then they are projected into the scores plots of the DPCA models built

with mass spectra of single protein films.

The projections of the mass spectra of proteins adsorbed to FAT substrates are shown

in figure 47 and reveal the following:

Amylase on lysozyme: The projections lie close to the amylase probability ellipse.

Hence amylase is detected in high amounts indicating that it adsorbs well on the

lysozyme layer.

Lysozyme on amylase: These projections are also close to the amylase ellipse. Thus

only little amounts of lysozyme are detected indicating that it does not adsorb well

on the amylase coated substrate.
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Figure 48: Projections of protein double layers adsorbed to FAT after sputtering. The

arrows indicate the direction of increasing sputter time.

BSA and lysozyme: The spectra of both types of samples are projected in the middle

between the BSA and lysozyme ellipses. As both proteins are detected, either the

secondly adsorbed protein forms a porous layer making detection of the lower layer

possible, or the two proteins form one mixed layer in the second adsorption step.

BSA and amylase: Here the same observations and conclusions as for BSA and lyso-

zyme are made.

Comparing these conclusions to the ones drawn from experiments of simultaneous

adsorption of two proteins, there seems to be a contradiction in the interaction of lysozyme

and amylase. On the one hand amylase adsorbs well on lysozyme and lysozyme does not

adsorb well on amylase. On the other hand more lysozyme than amylase adsorbs from

a mixture of the two proteins. This raises the question why lysozyme is not covered by

amylase as in the two step experiment. A possible answer can be found in the rinsing

step between the two adsorption steps. It might induce conformational changes in the

adsorbed lysozyme that favour the adsorption of amylase on it.

Figure 48 shows the effect of sputtering on the projections. The arrows indicate the di-

rection of increasing sputter time in steps of five seconds between two consecutive spectra.

For clarity only the projections of one series of mass spectra are shown. The projections

of the other series develop mainly in the same way. As expected, the projections de-

velop into a region between the three probability ellipses of single protein spectra. The

development is not represented by straight lines because of unequal destruction of dif-

ferent amino acids by sputtering and because of noise, which gets more important with
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Figure 49: Projections of protein double layers adsorbed to FAW substrates

increasing sputter times because of the vanishing of the amino acid related peaks. The

projections of spectra of samples coated with BSA and amylase behave in a very similar

way. This indicates that, regardless of the order of the adsorptions, one mixed layer of

the two proteins develops. If there were two layers one would expect a differing behaviour

depending on the order of adsorptions as it can be seen for lysozyme and BSA. The effect

that the projections of layers of amylase and BSA move closer to the amylase ellipse after

the first five seconds of sputtering is also seen for pure BSA layers (see figure 45). Thus

it does not show the detection of an increasing amount of amylase.

In figure 49 it can be seen that many of the projections of mass spectra of protein

double layers adsorbed to FAW substrates are situated differently than the ones of FAT

substrates (see figure 47). This shows an influence of the substrate onto the interactions

between different proteins upon adsorption. In detail the following observations are made

for FAW substrates:

Amylase and lysozyme: Contrary to the spectra on FAT substrates, the projections

are situated more or less in the middle between the probability ellipses of amylase

and lysozyme. Hence both proteins are detected at equal amounts. This can be

explained either by the formation of a porous layer of the secondly adsorbed protein

or by mixing of the two proteins in the second adsorption step.

BSA and lysozyme: Like the spectra on FAT substrates, the spectra are mostly pro-

jected into the middle between the ellipses of BSA and lysozyme. This leads to the

same conclusions as before.
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substrate

proteins silicon FAT FAW

lysozyme on BSA medium medium medium

lysozyme on amylase spread from little spread from

very little to high medium to high

BSA on lysozyme little medium medium

BSA on amylase spread from medium spread from

very little to little medium to high

amylase on lysozyme very little high medium

amylase on BSA high medium spread from

very little to little

Table 3: Results of DPCA on mass spectra of protein double layers. This table summarizes

the amount detected of the secondly adsorbed protein

Amylase on BSA: These projections lie close to or within the BSA ellipse. Thus the

amount of amylase detected is very small. It can be concluded that in contrast

to the case of FAT substrates, amylase does not adsorb well to BSA coated FAW

substrates.

BSA on amylase: Compared to the spectra on FAT substrates, these are projected in

a larger region closer to the BSA ellipse than to the amylase ellipse. Thus BSA is

detected in larger quantities than before. Hence BSA adsorbs in higher amounts to

an amylase coated FAW substrate than to a corresponding FAT substrate.

The projections of the spectra of all sample types show a higher spread on FAW substrates

than on FAT substrates.

Again the results of the consecutive adsorption of two proteins can be compared to the

ones of the simultaneous adsorption. In contrast to the experiments on FAT substrates,

the two types of experiments on FAW substrates lead partly to the same conclusions.

From a solution of BSA and amylase mainly BSA adsorbs to the substrate. Equally only

little amounts of amylase adsorb on a BSA coated sample. Thus in both experiments

BSA hinders the adsorption of amylase. Since the projections of consecutive adsorptions

of lysozyme and BSA or amylase and lysozyme are situated in the middle between the

probability ellipses of their components, these proteins do not significantly hinder or

favour the adsorption of one another. Hence their are no conclusions to be compared to

the one-step adsorption experiments.

Table 3 summarizes the results of the consecutive adsorption experiments of two pro-

teins for all three substrate types.

Figure 50 shows the development of the projections of mass spectra of protein double

layers on FAW substrates under sputtering. The arrows indicate the direction of increasing

sputter time in steps of five seconds between two consecutive spectra. For clarity only the

projections of one series of mass spectra are shown. The projections of the other series

develop mainly in the same way.

As before the projections of the spectra of all samples develop into the region between

the three protein probability ellipses. Thus the protein layers are rapidly destroyed and
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Figure 50: Projections of protein double layers adsorbed to FAW after sputtering. The

arrows indicate the direction of increasing sputter time.

cannot be recognized by their mass spectra any more. After the last sputtering period

only the substrate generated peaks show a noteworthy intensity in the mass spectra. The

projections of most samples do not develop directly to their final position but show a

strong shift to smaller values on the second discriminant principal component during the

first five to ten seconds of sputtering. As this behaviour is seen for most samples regardless

of their composition, it is not the effect of a rising proportion of amylase, which can be

found at lower scores on the second DPC. Instead it is probably caused by the not equal

destruction of different amino acids by the primary ion beam. A preferential destruction

of amino acids with highly positive loadings on the second DPC explains the development

of the projections.
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6 Summary and Outlook

In this work the two experimental dental implant materials FAT and FAW, made of flu-

oroapatite particles embedded in polymer matrices, and films of the proteins lysozyme,

amylase and bovine serum albumin (BSA), adsorbed to the two dental implant materi-

als, were investigated with time-of-flight secondary ion mass spectrometry (ToF-SIMS)

and the multivariate data analysis technique discriminant principal component analysis

(DPCA).

The elemental surface composition of the dental implant materials was estimated from

the intensity of the peaks caused by the ions of different elements in ToF-SIMS mass

spectra acquired on samples of FAT and FAW. These compositions were compared to the

surface composition of bovine tooth enamel obtained in the same way. It was found that

the main surface components of all three materials are sodium, phosphorus, potassium,

calcium, oxygen and fluorine. Additionally the two implant materials contain high quan-

tities of aluminium and strontium. Due to the limitations of the ToF-SIMS technique for

quantitative analysis, exact surface compositions cannot be measured by this method.

Protein adsorption experiments were at first performed on silanised silicon substrates,

because silicon substrates offer a well-defined flat surface and the adsorption of proteins

to silanised samples had already been studied with other methods within the work group.

ToF-SIMS mass spectra of cations were acquired on samples coated with lysozyme or BSA.

These spectra were dominated by a signal caused by silicon probably from polymerised

silane on the sample surface. Additionally many peaks associated to amino acid fragments

could be found in the mass spectra. Matlab functions were written to select amino acid

related peaks from the mass spectra, to subtract a background spectrum and to do DPCA

on the mass spectra. Nevertheless it was not possible to distinguish between different

proteins by their scores resulting from DPCA because of a large spread within the data.

This spread was probably caused by varying amounts of polymerised silane on the sample

surfaces.

In the next step proteins were adsorbed to unsilanised silicon substrates to prevent the

influence of polymerised silane on the mass spectra. In this case, after selection of amino

acid related peaks and DPCA, discrimination of samples coated with amylase, lysozyme

or BSA by their mass spectra of cations was possible. The concentration of the buffer

solution was varied to obtain the best discrimination of the proteins at a concentration

of ten millimols per litre of the buffer salts sodium di(hydrogen)phosphate and disodium

hydrogenphosphate. The results of DPCA were evaluated with leave-one-out (LOO) tests.

These tests showed that the data were very well represented by the DPCA model, because

46 out of 48 spectra could be assigned to the right protein.

With the DPCA model developed with single component protein films, the adsorption

behaviour in the cases of simultaneous or consecutive adsorption of two proteins to the

same sample was studied. Therefore mass spectra obtained on the new samples were

projected into the existing scores plot. Mutual influences between the different proteins

upon adsorption were observed. It was concluded that the presence of lysozyme hindered

the adsorption of amylase and BSA in the two studied cases. These results were partly

confirmed by enzymatic activity measurements of amylase.

Finally, amylase, lysozyme and BSA were adsorbed to the dental implant materials.
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Again the three proteins could be distinguished by the scores of their mass spectra of

cations after selection of amino acid related peaks and DPCA. The peak selection had to

be slightly modified, because some of the peaks were influenced by substrate generated

peaks of the same nominal mass. A correct assignment of at least 89% of the spectra in

LOO tests showed a good representation of the data by the DPCA models. Furthermore,

a great similarity of the DPCA results obtained on the two different substrate types was

observed. This shows the formation of similar single component protein films on the two

dental implant materials.

Samples coated with two proteins adsorbed simultaneously or consecutively were also

studied. Mass spectra acquired on these samples were projected into the scores plots of

the corresponding DPCA model built with spectra from single component protein films.

On both substrate types the experiments of simultaneous adsorption of two proteins led

to the same results: BSA shows the strongest affinity to adsorb from the mixed solutions

followed by lysozyme, while amylase has the smallest affinity. The consecutive adsorption

of lysozyme and BSA on both substrates led to the detection of equal amounts of both

proteins regardless of the order of adsorption. Thus either one mixed layer of the two

proteins or a porous layer of the second protein had developed. On FAT there seemed to

be a contradiction in the behaviour of lysozyme and amylase between the two types of

experiments: Lysozyme hindered the simultaneous adsorption of amylase while it favoured

the consecutive adsorption of amylase. This could be explained by conformational changes

of lysozyme in the rinsing step between the consecutive adsorptions. By contrast both

types of experiments on FAW suggest that the presence of lysozyme hinders the adsorption

of amylase. Hence in this case the differences between the two substrate types clearly

influence the co-adsorption of amylase and lysozyme.

Lysozyme has bacteriolytical effects in the acquired enamel pellicle while amylase

favours the adsorption of bacteria and thus the formation of plaque. Thus the mutual

influence of these two proteins upon adsorption is of special interest for the design of

dental implant materials. This influence, as well as the ones between the other protein

combinations, has been shown to be dependent on the substrate used. It should be further

investigated why a given substrate favours the adsorption of one protein or another.

Possible reasons are the electrical charge and the hydrophilicity of the substrate and the

protein.

The co-adsorption results can be verified using other observation techniques. Nicole

Lawrence, a member of our work group, is examining the adsorption of proteins on dif-

ferently prepared silicon substrates with dynamic contact angle measurements and ellip-

sometry in the context of her Ph.D. thesis.

The solutions of maximum three proteins used in this work are by far less complex

than human saliva. In future works more proteins should be used to approach the in vivo

situation. Furthermore, the parameters pH and temperature are not constant in the oral

cavity. So their influence should also be examined.

The influence of the buffer solution merits further investigation, too. It has been seen

that the results strongly depend on the concentration of the buffer salts. The use of other

than phosphate buffers could lead to new results.
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So far no use was made of the possibility to image the sample surface by ToF-SIMS. It

could be tried to bring different proteins on the sample at separated sites and to examine

the resulting surface distribution.

It was not possible to create depth profiles of the two layer protein films because the

unpulsed gallium ion beam used for sputtering the upper protein layer also destroyed the

lower protein layer at the same time. This is due to the high penetration depth of the

gallium ions. A possible solution to this problem is the use of a cluster ion source instead

of the gallium ion source. If for example a buckminsterfullerene (C60) is accelerated to the

same total energy as a gallium ion, the energy per atom and thus the penetration depth

is much smaller. Boussofiane-Baudin and others estimated that a buckminsterfullerene

projectile at 20 kilo-electron volts deposits its energy within the first 30 Ångstöms of an

organic surface [4]. Hence most of the damage is limited to the removed layer and the

lower layer remains intact for analysis. An additional effect of the lower penetration depth

is a strongly increased secondary ion yield. Weibel and others have shown that using a

buckminsterfullerene source improves the secondary ion yield on various organic surfaces

by a factor of at least 30 compared to a gallium source [34]. For high mass fragments the

effect is even stronger. Thus sample damage could be minimised by reducing the primary

ion dose while maintaining strong secondary ion intensities due to the high yield. Other

cluster ion sources as gold clusters (Au+
n
with n = 2 − 5) or sulfur pentafluoride (SF+

5 )

show comparable secondary ion yields as buckminsterfullerenes but the sample damage

is smallest for the latter [34]. Another approach to make depth profiling possible can be

the use of a cryo stage. By cooling down the samples the protein layers should be more

stable against in depth destruction by the sputter beam.

The protein layers are certainly denatured due to dehydration upon exposure to the

ultra high vacuum conditions in the ToF-SIMS apparatus. To preserve the protein layers

in their physiological state for analysis, one should try to prevent denaturation for example

by use of a cryo stage or by fixation with glutardialdehyde.

All these possibilities of further investigations show that this work has by no means

exhaustively dealt with the investigation of protein films on dental implant materials by

ToF-SIMS. Instead it has established a method of investigation, which can be used for

future studies, that can finally lead to many new insights into the subject.
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A Matlab functions

This section contains the source code of the Matlab functions written for data analysis.

einlesen.m

function out=einlesen(prefix,start,stop,suffix,m)

%out=einlesen(prefix,start,stop,suffix,m))

%reads the files ’c:\tof sims\ascii\prefixstartsuffix.asc’

%to ’c:\tof sims\ascii\prefixstopsuffix.asc’ containing

%unit mass mass spectra exported from WinCadence and

%forms a (mx(stop start)) data matrix with the

%first m masses in (stop start) spectra

longprefix=[’c:\tof sims\ascii\’,prefix];

k=start;

filename=[longprefix,int2str(k),suffix,’.asc’];

%reading the first WinCadence export:

x=load(filename);

%extracting the counts at the first m masses:

out=voll(x,m);

%loop for the other files:

for k=start+1:stop

filename=[longprefix,int2str(k),suffix,’.asc’];

x=load(filename);

%new data is appended to the existing data matrix

out=matrix(out,x);

end

voll.m

function filled = voll(in,m);

%filled = voll(in,m)

%extracts counts from a WinCadence output unit mass

%mass spectrum

%in: (?x3) matrix: 1. column: channel numbers;

% 2. column: atomic mass units; 3. column: counts;

% masses with zero counts are not exported

%m: highest mass extracted

%filled: (mx1) vector: counts for m masses

c=0;

go=1;

k=1;



A MATLAB FUNCTIONS 73

%delete first row if it contains mass 0:

if in(1,2)==0

in=in(2:m+1,:);

end

%if the mass spectrum is complete,

%no masses with 0 counts must be added:

if in(m,2)==m

go=0;

filled(:,1)=in(1:m,3);

end

%add masses with 0 counts:

%loop for different masses:

while go==1

%check if mass and row number match

%and add the missing mass if they do not:

if in(k c,2)˜=k

filled(k,1)=0;

%c accounts for the shift induced by adding masses:

c=c+1;

else

filled(k,1)=in(k c,3);

end

%stop when highest mass is reached:

if k==m

go=0;

end

k=k+1;

end

matrix.m

function X = matrix(X,in)

%X = matrix(X,in)

%adds a new measurement to a data matrix

%X: (mxn) matrix: values of m variables in n measurements

%in: WinCadence output: unit mass mass spectrum

[m,n]=size(X);

%extracting the counts from WinCadence output:

in=voll(in,m);
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%appending the new data:

X(:,n+1)=in(:,1);

silanweg.m

function output=silanweg(input,background);

%output=silanweg(input,background);

%substracts a background spectrum from mass spectra;

%the background is scaled to have the same value as

%the measurement at the 28th variable

%input: (mxn) matrix: values of m variables in n spectra

%background: (mx1) vector: background values of m variables

[m,n]=size(input);

[mm,nn]=size(background);

if mm˜=m

fprintf(1,’Error: Measurements and background must have

the same number of rows!’)

return

end

%loop to treat different measurements:

for k=1:n

factor=input(28,k)/background(28,1);

output(:,k)=input(:,k) factor∗background(:,1);
end

auswahl.m

function out=auswahl(in)

%out=auswahl(in)

%selects amino acid related peaks from unit mass

%mass spectra

out(1,:)=in(30,:); %Gly

out(2,:)=in(43,:); %Arg

out(3,:)=in(44,:); %Ala

out(4,:)=in(45,:); %Cys

out(5,:)=in(60,:); %Ser

out(6,:)=in(61,:); %Met

out(7,:)=in(68,:); %Pro

out(8,:)=in(69,:); %Thr

out(9,:)=in(70,:); %Asn, Pro

out(10,:)=in(71,:); %Ser

out(11,:)=in(72,:); %Val

out(12,:)=in(73,:); %Arg

out(13,:)=in(74,:); %Thr

out(14,:)=in(81,:); %His
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out(15,:)=in(82,:); %His

out(16,:)=in(83,:); %Val

out(17,:)=in(84,:); %Gln, Glu, Lys

out(18,:)=in(86,:); %Ile, Leu

out(19,:)=in(87,:); %Asn

out(20,:)=in(88,:); %Asn, Asp

out(21,:)=in(98,:); %Asn

out(22,:)=in(100,:); %Arg

out(23,:)=in(101,:); %Arg

out(24,:)=in(102,:); %Glu

out(25,:)=in(107,:); %Tyr

out(26,:)=in(110,:); %His

out(27,:)=in(112,:); %Arg

out(28,:)=in(120,:); %Phe

out(29,:)=in(127,:); %Arg

out(30,:)=in(130,:); %Trp

out(31,:)=in(131,:); %Phe

out(32,:)=in(136,:); %Tyr

out(33,:)=in(159,:); %Trp

out(34,:)=in(170,:); %Trp

pca.m

function [PC, SCORE, V, mn]=pca(X);

%[PC, SCORE, V, mn]=pca(X)

%performs principal component analysis

%X: (mxn) matrix: values of m variables for n measurements

%PC: (mxm) matrix: loadings of m PC as m columns

%SCORE: (mxn) matrix: scores of m PC for n measurements

%V: (m) vector: variance captured by the m PC

%mn: (m) vector: mean values of the m variables

%for details on the PCA algorithm see J. Shlens,

%A tutorial on principal component analysis, 10/12/2005

[m,n]=size(X);

%scaling by total intensity:

for k=1:n

X(:,k)=X(:,k)/sum(X(:,k));

end

%mean centering:

mn=mean(X,2);

X=X repmat(mn,1,n);

%auxiliary matrix for SVD:

Y=X’/sqrt(n 1);
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%singular value decomposition:

[u,S,PC]=svd(Y);

%variances > m vector V:

S=diag(S);

V=S.∗S;

%projection > (mxn) matrix SCORE:

SCORE=PC’∗X;

%saving loadings and scores:

save ploading.dat PC ascii;

save pscore.dat SCORE ascii;

dpca.m

function [loading,score,variance,varianceintra]=dpca(x,anz,rep)

%[loading,score,relvariance,varianceintra]=dpca(x,anz,rep)

%performs discriminant principal component analysis

%x: (mxn) matrix: values of m variables for n measurements

%anz: number of groups

%rep: (1xanz) vector: number of measurements per group

%loading: (mxm) matrix: loadings of m DPC as m columns

%score: (mxn) matrix: scores of m DPC for n measurements

%variance: (1xm) vector: variance captured by the m DPC

%varianceintra: (mx1) vector: pooled intra group variances of m variables

%for details on the PCA algorithm see J. Shlens,

%A tutorial on principal component analysis, 10/12/2005

%for details on DPCA see P.W. Yendle, H.J.M. Macfie,

%Discriminant principal components analysis,

%J. of Chemometrics 3, 589 600, 1989

[m,n]=size(x);

[sizerepx,sizerepy]=size(rep);

if sizerepy==1

rep=repmat(rep,1,anz);

end

%scaling by total intensity:

for k=1:n

x(:,k)=x(:,k)/sum(x(:,k));

end

%pooled intra group variances of the variables:

% > varianceintra: (mx1)

varianceintra=zeros(m,1);
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for k=1:m

start=1;

stop=0;

for o=1:anz

stop=stop+rep(o);

varianceintra(k)=varianceintra(k)+var(x(k,start:stop));

start=start+rep(o);

end

end

%scaling by intra group standard deviations:

% > scaled data matrix s

for k=1:m

s(k,:)=x(k,:)/sqrt(varianceintra(k));

end

%scaled group means:

% > (mxanz) matrix sbar

for k=1:m

start=1;

stop=0;

for o=1:anz

stop=stop+rep(o);

sbar(k,o)=mean(s(k,start:stop));

start=start+rep(o);

end

end

%(mxn) matrix of scaled group means:

groupmeans=repmat(sbar(:,1),1,rep(1));

for o=2:anz

groupmeans=[groupmeans repmat(sbar(:,o),1,rep(o))];

end

%PCA with SVD > (mxm) matrix of loadings loading:

%mean centering:

mn=mean(groupmeans,2);

groupmeans=groupmeans repmat(mn,1,n);

helpmatrix=groupmeans’/sqrt(n 1);

[u,singularvalues,loading]=svd(helpmatrix);

%projection > (mxn) matrix of scores score

score=loading’∗s;

%variances of the DPC:

% > m vector variance
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for k=1:m

variance(k)=var(score(k,:));

end

%saving loadings and scores:

save dloading.dat loading ascii;

save dscore.dat score ascii;

plotpc2d.m

function plotpc2d(PC,SCORE,relvariance,anz,rep,omax)

%plotpc2d(PC,SCORE,relvariance,anz,rep,omax)

%creates 2D scores plots and loadings plots

%PC: (mxm) matrix: loadings of m PC as m columns

%SCORE: (mxn) matrix: scores of m PC for n measurements

%relvariance: (m) vector: relative variance captured by the m PC

%anz: number of groups

%rep: (anz) vector: number of measurements per group

%omax: highest dimension plotted

if omax<2

fprintf(1,’Error: Maximum principal component must be grater 1!’)

return

end

%scaling variances if necessary:

if sum(relvariance)˜=100

relvariance=relvariance/sum(relvariance)∗100;
end

[sizerepx,sizerepy]=size(rep);

if sizerepy==1

rep=repmat(rep,1,anz);

end

%loop for different plots:

for o=2:omax

figure

%loadings plot:

subplot(2,1,1)

plot(PC(:,o 1),PC(:,o),’kx’);

grid on

title(’Loadings Plot’);

xlabel([’PC ’ int2str(o 1)]);

ylabel([’PC ’ int2str(o)]);
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subplot(2,1,2)

%scores plots:

hold on

min=1;

max=0;

%loop for different groups:

for k=1:anz

max=max+rep(k);

switch k

case 1

plot(SCORE(o 1,min:max),SCORE(o,min:max),’ro’);

case 2

plot(SCORE(o 1,min:max),SCORE(o,min:max),’bx’);

case 3

plot(SCORE(o 1,min:max),SCORE(o,min:max),’g+’);

case 4

plot(SCORE(o 1,min:max),SCORE(o,min:max),’c∗’);
case 5

plot(SCORE(o 1,min:max),SCORE(o,min:max),’ms’);;

case 6

plot(SCORE(o 1,min:max),SCORE(o,min:max),’yd’);

otherwise

plot(SCORE(o 1,min:max),SCORE(o,min:max),’k^’);

fprintf(1,’Cannot plot more than 6 groups!’);

end

min=min+rep(k);

end

grid on

title(’Scores Plot’);

xlabel([’PC ’ int2str(o 1) ’ (’ int2str(relvariance(o 1)) ’%)’]);

ylabel([’PC ’ int2str(o) ’ (’ int2str(relvariance(o)) ’%)’]);

end

plotdpc2dmitellipse2.m

function plotdpc2dmitellipse2(PC,SCORE,relvariance,anz,rep,omax)

%plotdpc2dmitellipse2(PC,SCORE,relvariance,anz,rep,omax)

%creates 2D scores plots with probability ellipses and loadings plots

%PC: (mxm) matrix: loadings of m DPC as m columns

%SCORE: (mxn) matrix: scores of m DPC for n measurements

%relvariance: (m) vector: relative variance captured by the m DPC

%anz: number of groups

%rep: (anz) vector: number of measurements per group
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%omax: highest dimension plotted

if omax<2

fprintf(1,’Error: Maximum principal component must be greater one!’)

return

end

%scaling variances:

if sum(relvariance)˜=100

relvariance=relvariance/sum(relvariance)∗100;
end

[sizerepx,sizerepy]=size(rep);

if sizerepy==1

rep=repmat(rep,1,anz);

end

%loop to create more than one plot:

for o=2:omax

figure

%loadings plot:

subplot(2,1,1)

plot(PC(:,o 1),PC(:,o),’kx’);

grid on

title(’Loadings Plot’);

xlabel([’DPC ’ int2str(o 1)]);

ylabel([’DPC ’ int2str(o)]);

%scores plot with different styles for different groups:

subplot(2,1,2)

hold on

min=1;

max=0;

%loop for different groups:

for k=1:anz

%critical value of F distribution for 2 variables,

%rep(k) measurements and 95% confidence limit:

F=Fdistribution(rep(k));

%calculate critical TSquare value for the ellipses:

Tsquare=2∗(rep(k) 1)/(rep(k) 2)∗F;

max=max+rep(k);
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switch k

case 1

plot(SCORE(o 1,min:max),SCORE(o,min:max),’ro’);

ellipse(SCORE(o 1:o,min:max),Tsquare,’r’);

case 2

plot(SCORE(o 1,min:max),SCORE(o,min:max),’bx’);

ellipse(SCORE(o 1:o,min:max),Tsquare,’b’);

case 3

plot(SCORE(o 1,min:max),SCORE(o,min:max),’g+’);

ellipse(SCORE(o 1:o,min:max),Tsquare,’g’);

case 4

plot(SCORE(o 1,min:max),SCORE(o,min:max),’c∗’);
ellipse(SCORE(o 1:o,min:max),Tsquare,’c’);

case 5

plot(SCORE(o 1,min:max),SCORE(o,min:max),’ms’);

ellipse(SCORE(o 1:o,min:max),Tsquare,’m’);

case 6

plot(SCORE(o 1,min:max),SCORE(o,min:max),’yd’);

ellipse(SCORE(o 1:o,min:max),Tsquare,’y’);

otherwise

plot(SCORE(o 1,min:max),SCORE(o,min:max),’k^’);

fprintf(1,’Cannot plot more than six groups!’);

end

min=min+rep(k);

end

grid on

title(’Scores Plot’);

xlabel([’DPC ’ int2str(o 1) ’ (’ int2str(relvariance(o 1)) ’%)’]);

ylabel([’DPC ’ int2str(o) ’ (’ int2str(relvariance(o)) ’%)’]);

end

ellipse.m

function ellipse(X,Tsquare,color)

%ellipse(X,Tsquare,color)

%plots a probability ellipse around data points

%X: (2xn) matrix containing n measurements of 2 variables

%Tsquare: critical value of the TSquare distribution

%color: colour (r,b,g,c,m,y or k)

%for details on the algorithm see J.E. Jackson, A user’s guide

%to principal components, John Wiley and sons inc., New York, 1991

[m,n]=size(X);

if m˜=2

fprintf(1,’ \n Error: Data matrix must be 2 x n! \n’);
return
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end

%Centre of the ellipse:

mitte=mean(X,2);

%Mean centered auxiliary matrix:

Y=X repmat(mitte,1,n);

Y=Y’/sqrt(n 1);

%singular value decomposition to calculate

%principal components and standard deviations:

[u,S,PC]=svd(Y);

%standard deviations:

S=diag(S);

%rescaling of principal components

PC(:,1)=S(1)∗PC(:,1);
PC(:,2)=S(2)∗PC(:,2);

kmax=sqrt(Tsquare);

hold on

%calculation and plotting of the ellipse;

%number of points can be controlled

%by the stepwidth of the loop:

for k=0:0.04:kmax

g=k;

h=sqrt(Tsquare kˆ2);

x=mitte+g∗PC(:,1)+h∗PC(:,2);
plot(x(1),x(2),color)

x=mitte+g∗PC(:,1) h∗PC(:,2);
plot(x(1),x(2),color)

x=mitte g∗PC(:,1)+h∗PC(:,2);
plot(x(1),x(2),color)

x=mitte g∗PC(:,1) h∗PC(:,2);
plot(x(1),x(2),color)

end

g=sqrt(Tsquare);

h=0;

x=mitte g∗PC(:,1);
plot(x(1),x(2),color)

x=mitte+g∗PC(:,1);
plot(x(1),x(2),color)
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Fdistribution.m

function ausgabe=Fdistribution(n)

%ausgabe=Fdistribution(n)

%finds the upper limit of the 95% confidence interval

%of an F distribution for 2 variables and n measurements;

%values are from the table in J.E. Jackson, A user’s guide

%to principal components, John Wiley and sons, New York,1991;

%intermedial values linearly approximated

%tabulated values:

F= [1.9950000e+002

1.9000000e+001

9.5500000e+000

6.9400000e+000

5.7900000e+000

5.1400000e+000

4.7400000e+000

4.4600000e+000

4.2600000e+000

4.1000000e+000

3.9800000e+000

3.8900000e+000

3.8100000e+000

3.7400000e+000

3.6800000e+000

3.6300000e+000

3.5900000e+000

3.5500000e+000

3.5200000e+000

3.4900000e+000

3.4700000e+000

3.4400000e+000

3.4200000e+000

3.4000000e+000

3.3900000e+000

3.3700000e+000

3.3500000e+000

3.3400000e+000

3.3300000e+000

3.3200000e+000

3.2300000e+000

3.1500000e+000

3.0700000e+000

3.0000000e+000];

%to find the right value the number of measurements has

%to be reduced by the number of variables:
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n=n 2;

if n <1

disp(’Error: Number of measurements must be greater 2!’)

elseif n<31

%the first 30 values correspond to 1 to 30 measurements:

ausgabe=F(n);

elseif n<40

%linear interpolation:

ausgabe=3.32 (n 30)∗0.009;

elseif n<60

ausgabe=3.23 (n 40)∗0.004;

elseif n<121

ausgabe=3.15 (n 60)∗8/6000;

elseif n>120

disp(’Warning: Using approximation for

(number of measurements) >> 120’)

ausgabe=3;

end

loo.m

function loo(data,anz,rep)

%loo(data,anz,rep)

%performs DPCA, leaves each measurement out once

%and projects it into the scores plot

%data: (mxn) matrix: values of m variables in n measurements

%anz: number of groups

%rep: (anz) vector: number of measurements per group

[m,n]=size(data);

[sizerepx,sizerepy]=size(rep);

if sizerepy==1

rep=repmat(rep,1,anz);

end
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%loop to leave out one measurement after another:

column=0;

for k=1:anz

for j=1:rep(k)

%reduceddata: matrix without ’column’th measurement

column=column+1;

if column==1

reduceddata=data(:,2:n);

elseif column==n

reduceddata=data(:,1:n 1);

else

reduceddata=[data(:,1:column 1),data(:,column+1:n)];

end

%reducing number of measurements in concerned group:

reducedrep=rep;

reducedrep(k)=reducedrep(k) 1;

%DPCA:

[dloading,dscore,dvariance,dintvar]=dpca(reduceddata,anz,reducedrep);

%scores plot:

plotdpc2dmitellipse(dscore,dvariance,anz,reducedrep,2);

%projection of the left out measurement:

dpcaprojektion(dloading,dintvar,data(:,column),1,’ko’);

%halting program before the next measurement is left out:

fprintf(1,’Press any key to continue! \n’)
pause

end

end

loo3.m

function assignment=loo3(data,anz,rep,dimmax)

%assignment=loo(data,anz,rep,dimmax)

%performs DPCA, leaves each measurement out once

%and calculates its scores to assign it to the closest group.

%Closeness is defined by the euclidean distances to the

%center of gravity of a groups data points.
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%data: (mxn) matrix: values of m variables in n measurements

%anz: number of groups

%rep: (anz) vector: number of measurements per group

%dimmax: highest considered DPC

%assignment: (nx(anz+1)) matrix: first column: number of the

% closest group to a measurement; 2.,3.,... column:

% relative distance to the 1.,2.,... group

[m,n]=size(data);

[sizerepx,sizerepy]=size(rep);

if sizerepy==1

rep=repmat(rep,1,anz);

end

%loop to leave out one measurement after another:

column=0;

for k=1:anz

for j=1:rep(k)

%reduceddata: matrix without ’column’th measurement:

column=column+1;

if column==1

reduceddata=data(:,2:n);

elseif column==n

reduceddata=data(:,1:n 1);

else

reduceddata=[data(:,1:column 1),data(:,column+1:n)];

end

%reducing number of measurements in concerned group:

reducedrep=rep;

reducedrep(k)=reducedrep(k) 1;

%DPCA:

[dloading,dscore,dvariance,dintvar]=dpca(reduceddata,anz,reducedrep);

%projection of left out measurement:

score=dpcaprojektion(dloading,dintvar,data(:,column),1,’no’);

%loop to calculate distances to all groupmeans:

min=1;

max=0;

for i=1:anz

%calculate center of gravity:

max=max+reducedrep(i);
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dpcmean=mean(dscore(1:dimmax,min:max),2);

%calculate euclidean distance:

distance(i)=0;

for h=1:dimmax

distance(i)=distance(i)+(score(h) dpcmean(h))ˆ2;

end

distance(i)=sqrt(distance(i));

min=min+reducedrep(i);

end

%assign measurement to closest group:

[minimum,minimumindex]=min(distance);

assignment(column,1)=minimumindex;

%calculate relative distances:

for i=1:anz

assignment(column,1+i)=distance(i)/minimum;

end

end

end

pcaprojektion.m

function score=pcaprojektion(loading,mitte,data,index,stil)

%dpcaprojektion(loading,mitte,data,index,stil)

%projects a data matrix using PC loadings into a scores plot

%loading: (mxm) matrix: loadings of m PC as m columns

%mitte: m vector: mean values of m variables for the original data

%data: (mxn) matrix: values of m variables for n new measurements

%index: number of first displayed PC in the scores plot

%stil: style of the projected data points

%score: (mxn) matrix: projected scores of m PC for n new measurements

[m,n]=size(data);

%scaling of measurements by total intensity:

for k=1:n

data(:,k)=data(:,k)/sum(data(:,k));

end

%mean centering:

centered=data repmat(mitte,1,n);

%projection:

score=loading’∗centered;

%plotting can be prevented with style ’no’:
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if stil==’no’

return

end

%plotting:

hold on

plot(score(index,:),score(index+1,:),stil);

dpcaprojektion.m

function score=dpcaprojektion(loading,varianceintra,data,index,stil)

%dpcaprojektion(loading,varianceintra,data,index,stil)

%projects a data matrix using DPC loadings into a scores plot

%loading: (mxm) matrix: loadings of m DPC as m columns

%varianceintra: (mx1) vector: pooled intra group variances of m variables

%data: (mxn) matrix: values of m variables for n measurements

%index: number of first displayed DPC in the scores plot

%stil: style of the projected data points

%score: (mxn) matrix: projected scores of m DPC for n measurements

%for details on DPCA see P.W. Yendle, H.J.M. Macfie,

%Discriminant principal components analysis,

%J. of Chemometrics 3, 589 600, 1989

[m,n]=size(data);

%scaling of measurements by total intensity:

for k=1:n

data(:,k)=data(:,k)/sum(data(:,k));

end

%scaling by pooled intra group variance:

for k=1:m

scaled(k,:)=data(k,:)/sqrt(varianceintra(k));

end

%projecting:

score=loading’∗scaled;

%plotting can be prevented with style ’no’:

if stil==’no’

return

end

%plotting:

hold on

plot(score(index,:),score(index+1,:),stil);
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zuordnen.m

function zuordnung=zuordnen(score,loading,intvar,anz,rep,data,dimmax)

%zuordnung=zuordnen(score,loading,intvar,anz,rep,data,dimmax)

%assigns new measurements to a group of measurements

%by the euclidean distance of the projection into the

%DPC space calculated with the original measurements to the

%centers of gravity of the original groups

%anz: number of groups

%rep: (1xanz) vector: number of measurements per group

%loading: (mxm) matrix: loadings of m DPC as m columns

%score: (mxn) matrix: scores of m DPC for n measurements

%intvar: (mx1) vector: pooled intra group variances of m variables

%dimmax: dimensionality of the DPC space

%zuordnung: (nx(anz+1)) matrix: first column: number of the

% closest group to a measurement; 2.,3.,... column:

% relative distance to the 1.,2.,... group

[m,n]=size(data);

[sizerepx,sizerepy]=size(rep);

if sizerepy==1

rep=repmat(rep,1,anz);

end

%DPCA projection of the new data:

newscore=dpcaprojektion(loading,intvar,data,1,’no’);

%loop for different new measurements

for j=1:n

%select one measurement:

newscorej=newscore(:,j);

min=1;

max=0;

%loop for different groups:

for i=1:anz

max=max+rep(i);

%center of gravity of the group:

groupmean=mean(score(1:dimmax,min:max),2);

%calculate euclidean distance:

distance(i)=0;

for h=1:dimmax

distance(i)=distance(i)+(newscorej(h) groupmean(h))ˆ2;

end
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distance(i)=sqrt(distance(i));

min=min+rep(i);

end

%assign new measurement to closest group:

[minimum,minimumindex]=min(distance);

zuordnung(j,1)=minimumindex;

%calculate relative distances to other groups:

for i=1:anz

zuordnung(j,1+i)=distance(i)/minimum;

end

end
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