	九十二學年度_	電子工	電子工程研判所 系(所)						組碩士班研究生招生考試			
科目_	工程數學	科號	2601	. 共_	2	頁第	/ 運	₹ '	*請在試卷	【答案卷】	內作答	
											<u> </u>	
	1. Find the general solution of $y' = 6 \frac{y \ln y}{x}$.								(5	(5%)		
	2. Solve $x' - x = f(t)$, where $x(0) = 0$, and $f(t)$ is 20 on $0 < t < 1$, 10 of and 0 on $t > 2$.									1 < t < 2, 0%)		
	3. Find the general solution of $y'' + 2y' + y = e^{-x} \cos x$.							(1	0%)			
		series and For the Fourier se $f(t) =$		esentat	tion of a	$t + 2\pi$	dic func $f(t)$	tioi	n f(t):			
	(b) What (expi	ote its Fourier are the Fourier ress the Fouri	er series i ier coeffic	represe cients	entation in terms	for g(s of a _n	t) where and b_n)	e g(f(t) = 3f(-t) +	(10%) - 2f(t-π)? (7%)		
	(c) Find t	he solution y_t $\frac{d^2y(t)}{dt^2} +$								(8%)		
	5. Partial diff	ferential equa	ations (PI	DE's)								
	(a) Write	e down the w	ave equa	tion, d	iffusion	equat	ion and	Laj	place equat	ion.		
	(b) Write	down the de	efinition o	of a lin	ear PD	E.				(5%).		
	Is u_x	$u_x + (2x-1)u_x$	$-2xu_y$	_y = 0	a linear	PDE?	•			(5%)		
	 (c) Write down the definition of hyperbolic, elliptic and parabolic PDE's and classify the wave equation, diffusion equation and Laplace equation. (5%) (d) Similar to d'Alembert's solution to the wave equation, one can usually change the independent variables from x, y to, say, ξ = ξ(x, y) and η = η(x, y) to simplify the second-order terms in the PDE 											
	u_{xx} +	$u_{xx} + (2x-1)u_{xy} - 2xu_{yy} = 0$. Explain how you will do to determine the										
	functi	ions $\xi(x, y)$	and $\eta(x)$	(, y) .					((10%)		

國 立 清 華 大 學 命 題 紙

九十二學年度<u>電子工程研判所</u>系(所)<u>組碩士班研究生招生考試</u> 科目<u>工程數學</u>科號<u>2601</u>共<u>2</u>頁第<u>2</u>頁<u>*請在試卷【答案卷】內作答</u>

6. Consider the real integral $\int_{-\infty}^{\infty} \frac{1}{x - i\delta}$, where δ is a positive number. A student is

trying to evaluate this integral by contour integration in the complex plane. He chooses the contour C to enclose the upper half complex plane, that is, C = infinite semi-circle with diametrical side being the x-axis. He gets

$$\int_{-\infty}^{\infty} \frac{1}{x - i\delta} = \oint_{C} \frac{dz}{z - i\delta} = 2\pi i,$$
 (1)

since there is exactly one pole inside C. On the other hand, if he lets C enclose the lower half plane, he would get

$$\int_{-\infty}^{\infty} \frac{1}{x - i\delta} = \oint_{C} \frac{dz}{z - i\delta} = 0,$$
 (2)

since no poles sit inside C. The results (1) and (2) are obviously in conflict. Obviously something is wrong with his contour integration.

- (a) Explain what went wrong in the contour integration? (13%)
- (b) Correct it and re-evaluate the integral by contour integration. (You are not allowed to use other methods.)