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i e field Z; consists of two elements 0 and 1 with the o perations of a defined by
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Let A= ox=0 "l and b= | whereall entries are in Z;
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{a) (3 %) For the matrix 4, con g}il‘ic the rank and the inverse if it exists,
(b) (4 %} Determine whether the em 4 x = b is consistent. If the system is nsistent, find all solutions.
(c) (3%} Find a basis for the mmxaon set of the corresponding homogeneous system,

2o LetS={(1,0, 1), (2, 2,2 3 in R’ , and W= gpan(S).

(a) (6 9) Find an orthonormal basis of W and W+
by 3%)Ifx= {?, 0, 0), find the closet vector 1 on W to x.
(e} (3 %) What is the closest distant from W to x7 Please also specify the corresponding vector z.
{d} (3 %) Please plot a schematic dia iagram that specifies the relation of x, 1, z, W and “}_5

3. The differential equation: j’f(z‘}-%» ”n{ ) b ){ )~ :;{f} where g and b are constants and u(?} is the unit step function. All initial
conditions are zero.

{a) o) Solve y(fy when o= 2 and b = 4,
(b} (5%) Solveyv() whena=4andh =4,

4. (5%) EM wave propagates inside an abws*ptiw naterial. The absorbed intensity amount per penetration depth is proportional
to the intensity at that position. Write down a 1 ithematic model to describe the phenomenon above and obtain the general
solution,

5. Solve the initial value proble

iy 277 . .
(@) (5%) x'=y+yx?+3" y(2)=0.
(b} (5%) Solve the initial value problem,” s with y =3, 30 =q
e
6. Evaluate the following integrals,
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(b) (6%%) ; sinthx) dx, where k
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with o =3

Let f(f) bea perindic functi
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76} The following Legendre Equation
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has two linearly independent solutions. Calculate to find the solution that is

vwith period  p, and its corresponding Laplace Transform Fls)=

¥

(s} intermsofa &smgis integral within a finite range, "Finite 1

(a) (4%) Derive the general form of
sund of th
Trar

e %zn“gm s infinit

neither the upper or lower be
orm of x{r}, fmm the following initial value

(b} {4"0)( alculate X'{s5), the Laplace problem

nsic

b+ 10y = 51(ny, “Q} = M0} = 0,
wher f'{z‘} is periodi vperiod 2, and is defined as f(1) = 8(r = 1), for 057 <2, whered|
that describes an mﬁm{&-simz‘p impuise,
rm e Laplace Transform to further calculate x(), so YOUur answe

eed to perform inv
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You do not

coniain a si §§ term but not an infinite series,

piecewise continuous periodic functions f(}*} with a period 2L that s

right (left) limits at 7. We can define ¢}

Moreover, there is a theorem telling that the corresponding Fourier basis functions 1, cog—
1 3:) E

ch functions, f.e., any such /{7) can be expre

functions are orthogonal to ea

ch other, caloutate a

of Leibniz's series |-

(b} (8%) Calculate the exact value
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Consider the complex function Az} =x"~ iy,

(a)} (3%) Where is f{z) differentiable?

{bY (3%%) Whet

?

ere is flz) analytic?

(7% Consider a branch flz) of g.@ - " ? that is analytic in the exterior of
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means that
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is the delta function
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