科目: 工程數學 A(5003)

校系所組: 中大照明與顯示科技研究所(乙組)

中大電機工程學系(電子組、固態組)

交大電子研究所(甲組、乙組)

清大電機工程學系(甲組)、光電工程研究所

清大電子工程研究所、工程與系統科學系(丁組)

清大動力機械工程學系(乙組)

陽明醫學工程研究所(醫學電子組)

陽明生醫光電研究所(理工組B)

1. The field \mathbb{Z}_2 consists of two elements 0 and 1 with the operations of addition (+) and multiplication (·) defined by $0+0=0,\,0+1=1,\,1+0=1,\,1+1=0,\,0\cdot 0=0,\,0\cdot 1=0,\,1\cdot 0=0,\,$ and $1\cdot 1=1.$

Let
$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$
, $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$, and $b = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$, where all entries are in \mathbb{Z}_2 .

- (a) (3 %) For the matrix A, compute the rank and the inverse if it exists.
- (b) (4%) Determine whether the system Ax = b is consistent. If the system is consistent, find all solutions.
- (c) (3 %) Find a basis for the solution set of the corresponding homogeneous system.
- 2. Let $S = \{(1, 0, 1), (2, 2, 2)\}$ in \mathbb{R}^3 , and $\mathbb{W} = \text{span}(S)$.
 - (a) (6 %) Find an orthonormal basis of W and W^{\perp} .
 - (b) (3%) If x = (2, 0, 0), find the closet vector u on **W** to x.
 - (c) (3 %) What is the closest distant from W to x? Please also specify the corresponding vector z.
 - (d) (3 %) Please plot a schematic diagram that specifies the relation of x, u, z, \mathbf{W} and \mathbf{W}^{\perp} .
- 3. The differential equation: $\ddot{y}(t) + a\dot{y}(t) + by(t) = u(t)$, where a and b are constants and u(t) is the unit step function. All initial conditions are zero.
 - (a) (5%) Solve y(t) when a = 2 and b = 4.
 - (b) (5%) Solve y(t) when a = 4 and b = 4.
- 4. (5%) EM wave propagates inside an absorptive material. The absorbed intensity amount per penetration depth is proportional to the intensity at that position. Write down a mathematic model to describe the phenomenon above and obtain the general solution.
- 5. Solve the initial value problems,

(a) (5%)
$$xy' = y + \sqrt{x^2 + y^2}$$
, $y(2) = 0$.

(b) (5%) Solve the initial value problem,
$$\frac{y_1'-y_1-y_2=3x}{y_1'+y_2'-5y_1-2y_2=5}$$
, with $y_1(0)=3$, $y_2(0)=4$.

Evaluate the following integrals.

(a) (6%)
$$\int_{-\infty}^{\infty} \frac{x^3 + 1}{x^4 + 1} dx;$$

(b) (6%)
$$\int_{-\infty}^{\infty} \frac{\sin(kx)}{x - a} dx$$
, where $ka = \pi$.

注: 背面有試題

科目: 工程數學 A(5003)

校系所組:中大照明與顯示科技研究所(乙組)

中大電機工程學系(電子組、固態組)

交大電子研究所(甲組、乙組)

清大電機工程學系 (甲組)、光電工程研究所

清大電子工程研究所、工程與系統科學系(丁組)

清大動力機械工程學系(乙組)

陽明醫學工程研究所(醫學電子組)

陽明生醫光電研究所(理工組B)

7. (5%) The following Legendre Equation

$$(1-x^2)y''-2xy'+\alpha(\alpha+1)y=0$$

with $\alpha = 3$ has two linearly independent solutions. Calculate to find the solution that is a polynomial.

- 8. Let f(t) be a periodic function with period p, and its corresponding Laplace Transform $F(s) = \mathcal{L}\{f(t)\}$ exists.
 - (a) (4%) Derive the general form of F(s) in terms of a single integral within a finite range. "Finite range" means that neither the upper or lower bound of the integral is infinity.
 - (b) (4%) Calculate X(s), the Laplace Transform of x(t), from the following initial value problem x'' + 6x' + 10x = 5f(t); x(0) = x'(0) = 0,

where f(t) is periodic with period 2, and is defined as $f(t) = \delta(t-1)$, for $0 \le t < 2$, where $\delta(t)$ is the delta function that describes an infinite-sharp impulse.

You do not need to perform inverse Laplace Transform to further calculate x(t), so your answer for X(s) should contain a single term but not an infinite series.

9. Consider all piecewise continuous periodic functions f(t) with a period 2L that satisfy $f(t) = f(t^-) + f(t^+)$, where $f(t^\pm)$ are the function's right (left) limits at t. We can define the inner product between any two such functions $f_1(t)$ and $f_2(t)$ as $f_1 \circ f_1 = \int_0^{2L} f_1(t) f_2(t) dt$.

Moreover, there is a theorem telling that the corresponding Fourier basis functions 1, $\cos \frac{m\pi t}{L}$, and $\sin \frac{m\pi t}{L}$ with m=1, 2, 1

3, ... form a complete basis set for all such functions, i.e., any such f(t) can be expressed as

$$f(t) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left(a_m \cos \frac{m\pi t}{L} + b_m \sin \frac{m\pi t}{L} \right)$$

- (a) (4%) Using the fact that all the Fourier basis functions are orthogonal to each other, calculate all a_m and b_m .
- (b) (8%) Calculate the exact value of Leibniz's series $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots$
- 10. Consider the complex function $f(z) = x^2 iy^2$.
 - (a) (3%) Where is f(z) differentiable?
 - (b) (3%) Where is f(z) analytic?
- 11. (7%) Consider a branch f(z) of $(z^2-1)^{1/2}$ that is analytic in the exterior of the unit circle, |z| > 1. If $f(\sqrt{2}) = -1$, find $f(-i\sqrt{2})$.