

Search HE UNIVERSITY OF BRITISH COLUMBIA

Q~

Faculty of Forestry | Profiles

Faculty of Forestry

Faculty Profiles 🔻

<u>Login</u>

Home / Profiles / Gregory Smith

Expert Search

Search Profiles

Research Keywords

communities and livelihoods forest

measurements <u>vertebrate ecology</u>

engineering sampling design

<u>aboriginal forestry microbiology</u>

wood products entomology

wood anatomy plant physiology social

impact landscape ecology hydrology

soil science forest biology

biotechnology wood durability

biodiversity conservation

climate change population

demography **sustainability**

<u>forest operations international trade</u>

landscape planning ornithology

communications wood technology

<u>business management remote</u>

sensing economics genetics stand

<u>dynamics</u> <u>forest</u>

management social science

<u>stream and riparian research</u>

genomics wood science

modelling biometrics silviculture

ecosystems ecology

forest policy

Gregory D Smith

Associate Professor

Research Interests: engineering, wood products

Contact Info

Teaching and Research

<u>Publications</u>

Department of Wood Science

Forest Sciences Centre 2935 2424 Main Mall Vancouver, BC V6T 1Z4 Canada

work phone: 604-822-0081

greg.smith@ubc.ca

Advancing fundamental understanding of bonding processes in advanced wood composites. — Quantification of the processing-structure-property relationships of reconstituted wood composites. — Application of fracture mechanics to the bonding of wood composites. — Developing realistic, mechanism based models that describe blending processes for OSB and MDF. — Development of new classes of advanced composite wood products.

Projects

Development of Bamboo Composites for structural lumber applications. Examination of the proerties and resin contents of commerical MDF and PB

Modelling the rotary drum blending process in the manufacuring of OSB and OSL using discrete element modelling

Professional Affiliations

Forest Products Society FPS

Professional Engineer P.Eng.

Society of Wood Science and Technology

Current Graduate Students

Shayesteh Haghdan, PhD Solace Sam-Brew, PhD Ying-Li (Ingrid) Tsai, PhD Diyan Xian, MASc Jörn Dettmer, MASc

Current Courses

Summer 2013

No WOOD course(s) were found for S2013 term. Summer 2013 No WOOD course(s) were found for S2013 term. Summer 2013 No WOOD course(s) were found for S2013 term.

Selected Publications

Semple, K.E. Xian, D. Smith, G.D. (2013). Reinforced-core particleboard for improved fastener holding ability. Wood and Fiber Science 02May2013.

Chen, Z. Yan, N. Smith, G. D. Deng, J. (2012). Investigation of Flexural Creep of Kraft Paper Honeycomb Core Sandwich Panels Using the Finite Element Method (FEA) Wood and Fiber Science 44(4)1-10 Wood and Fiber Science 44(4)1-10

E.K. Sackey, C. Zhang, Y.-L Tsai, A. Prats, G.D. Smith (2011). Feasibility of a New Hybrid Wood Composite Comprised of Wood Particles and Strands Wood and Fiber Science 43(1) 1-10 Wood and Fiber Science 43(1) 1-10

Z. Chen, N. Yan, J. Deng, G.D. Smith. (2011). Flexural creep behavior of sandwich panels containing Kraft paper honeycomb core and wood composite skins Materials Science and Engineering: A Volume 528, Issues 16-17, 25 June 2011, Pages 5621-5626. Materials Science and Engineering: A Volume 528, Issues 16-17, 25 June 2011, Pages 5621-5626.

Zhou, C.; C. Dai; G.D. Smith. (2011). Modeling vertical density profile formation for strand-based wood composites during hot pressing: Part 2. Experimental investigations and model validation Composites Part B: Engineering 42(6)1357–1365 Composites Part B: Engineering 42(6)1357–1365

Sam-Brew, S.; Semple K.; Smith, G.D. (2011). Preliminary experiments on the manufacture of hollow core composite panels Forest Products Journal 61(5)381 FPJ manuscript FPJ-D-10-00068. Forest Products Journal 61(5) 381 FPJ manuscript FPJ-D-10-00068.

Sam-Brew, S. K. Semple G.D. Smith (2010). Edge Reinforcement of Honeycomb Sandwich Panels Forest Products Journal 60(4): 382-389. Forest Products Journal 60(4): 382-389.

C. Zhang and G.D. Smith (2010). Effects of Nanoclay addition to Phenol-Formaldehyde Resin on the

Permeability of Oriented Strand Lumber - Wood and Fiber Science, 42(4), 2010, pp. 553-555

Sackey, E.K. and G.D. Smith (2010). Characterizing macro-voids of uncompressed mats and finished particleboard panels using response surface methodology and X-ray CT Walter de Gruyter Holzforsching, Vol 64, pp. 343-352, 2010. DOI 10.1515/HF.2010.052

Zhang, C. Smith, G.D. (2010). In-Plane Permeability of Oriented Strand Lumber. Part II: Microscopic Investigation of Void Structure During Compression Society of Wood Science and Technology Wood and Fiber Science 42(2) pp. 121-129

Zhang C Smith GD (2010). In-Plane Permeability of Oriented Strand Lumber, Part I: The Effects of Mat Density and Flow Direction -Society of Wood Science and Technology -Wood and Fiber Science 42(1)99-106

Fang, Z. Ruddick, J.N.R. Smith, G.D. (2009). Selected Wood Preservatives for use with OSB. Part 2: Mechanical Properties of Boards. – JIWS 18(2)75-81

Cheng Zhou Gregory D. Smith Chunping Dai (2009). Characterizing hydro-thermal compression behavior of aspen wood strands -Walter de Gruyter -Holzforschung 63(5):609–617.

Sackey, E., G.D. Smith (2009). Empirical Distribution Models for Slenderness and Aspect Ratios if Core Particles of Particulate Wood Composites. – Wood and Fiber Science 41(3)255- 266.

Sackey, E., G.D. Smith. (2009). Empirical Distribution Models for Slenderness and Aspect Ratios if Core Particles of Particulate Wood Composites – Wood and Fiber Science 41(3):255-266

Zhou, C., Dai, C., Smith, G.D. (2008). A generalized mat consolidation model for wood composites – Holzforschung, 62(2) pp. 201-208.

A. Oudjehane J. Wang C. Zhang G.D. Smith F. Lam (2008). **Development of thick strand-based mountain pine beetle wood composites: Duration of load and permeability analyses** – -BC Journal of Ecosytems and Management , 9(3) 2008, 178-180.

Sackey, E.K., Semple, K.E., Oh, S.-W., Smith, G.D. (2008). Improving Core Bond Strength of Particleboard through Particle Size Redistribution. Society of Wood Science and Technology Wood and Fiber Science 40 (2):214-224

Semple, K. E., Vaillant, M.-H., Kang, K.-Y., Oh, S. W., Smith, G. D., Mansfield, S. D. (2007). Evaluating the suitability of hybrid poplar clones for the manufacture of oriented strand boards. – Holzforschung, 61(4):430-438

Conrad, M.P.C., G.D. Smith, G. Femlund (2004). Fracture of wood composites and wood-adhesive joints: A comparative review – Wood and Fiber Science 36(1) 2004 pp.26-39

Smith, G.D. (2004). The effect of some process variables on the lap-shear strength of aspen strands uniformly coated with pMDI-resin – Wood and Fiber Science 36(2) 2004, pp. 228–238.

Conrad, M.P.C., G.D. Smith, G. Femlund (2003). Fracture of solid wood: A review of structure and properties at different length scales – Wood and Fiber Science 35(4), 2003, pp. 570-584

Conrad, M.P.C., G.D. Smith, G. Fernlund (2003). **Fracture of discontinuos wood-adhesive bonds** – International Journal of Adhesion and Adhesives, 23 (2003) 39-47

Smith, G.D. (2003). **The lap-shear strength of droplets arrays of a PF-resin on OSB strands** – Forest Products Journal 53 (11/12) 2003: 1-7

Plummer. C.J.G, P.-E. Bourban, J.-E. Zanetto, G.D. Smith, J.-A. E. Manson (2003). Nonisothermal Fusions Bonding in Semicrystalline Thermoplastics – Journal of Applied Polymer Science, 87:1267-1276

Smith, G.D. Plummer, C.J.G. Bourban, P.-E. Manson, J.-A.E. (2001). Non-isothermal fusion bonding of polypropylene – Polymer 42 (2001):6247-6257

Bidaux, J.E., G.D. Smith, J.-A.E. Månson and C.J.G. Plummer. (1998). Fusion bonding of maleic anhydride grafted polypropylene-polyamide 6 blends to polyamide 6 – Polymer 39 (1998):5939-5948

Bidaux, J.E., G.D. Smith, N. Bernet, J. Hilborn and J.-A.E. Månson. (1996). Fusion Bonding of Maleic Anhydride Grafted Polypropylene to Polyamide 6 via In Situ Block Copolymer Formation at the Interface – Polymer 37 (1996):1129-1136.

Smith, G.D. and A. Poursartip (1993). A comparison of two resin flow models for laminate processing – Journal of Composite Materials 27: 1696–1711.

Faculty of Forestry

2424 Main Mall

Vancouver, BC Canada V6T 1Z4

Website www.forestry.ubc.ca

Email <u>forestry.web@ubc.ca</u>

Back to ton

UBC a place of mind

The University of British Columbia

The University of British Columbia

Emergency Procedures |

Terms of Use |

Copyright |

Accessibility