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Abstract. We study the pair contact process with diffusion (PCPD) using Monte

Carlo simulations, and concentrate on the decay of the particle density ρ with time,

near its critical point, which is assumed to follow ρ(t) ≈ ct−δ+c2t
−δ2 + . . .. This model

is known for its slow convergence to the asymptotic critical behavior; we therefore pay

particular attention to finite-time corrections. We find that at the critical point, the

ratio of ρ and the pair density ρp converges to a constant, indicating that both densities

decay with the same powerlaw. We show that under the assumption δ2 ≈ 2δ, two of the

critical exponents of the PCPD model are δ = 0.165(10) and β = 0.31(4), consistent

with those of the directed percolation (DP) model.
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1. Introduction

The pair contact process with diffusion (PCPD) is a one-dimensional model of fermionic

particles on a lattice. In this context, fermionic means that a site cannot be occupied

by more than one particle. When two particles are adjacent, they can interact in two

ways: they can annihilate each other, or alternatively, they can create another particle

on an adjacent lattice site. Particles can also diffuse by hopping from one site to the

next. The reactions of the PCPD model and their rates are given by:
{

AA0 → AAA

0AA → AAA
each with rate (1−p)(1−d)

2

AA → 00 with rate p (1− d)

A0 ↔ 0A with rate d

(1)

Given a value for the diffusion coefficient d, we can discern three different regimes

depending on the annihilation rate p. If p is very large, then annihilation dominates

the process, and the particles on the lattice will die out quickly. This is the inactive

phase. On the other hand, if p is very small, the particle creation reaction will ensure

that (with extremely high probability) the system will maintain a high density. This

is called the active phase. Well into the active or the inactive phase, long-ranged

interactions are absent, and both these regimes can therefore be described well by

mean-field theory. However, if the boundary between the active and inactive phase

is approached from either side, length and time scales diverge in a power-law fashion.

In analogy with equilibrium phase transitions, one expects that the system then exhibits

critical behaviour in the transition between these regimes, at the critical value pc.

From equilibrium statistical physics it is well established that phase transitions can

be classified in universality classes, each of which characterized by a unique set of

critical exponents. Moreover, these exponents are typically insensitive to small changes

in the model, such as details of short-ranged interactions. A central question in

non-equilibrium statistical physics is whether also dynamical phase transitions can be

classified into universality classes, which also are insensitive to such small changes.

In this paper we will concentrate on the scaling relations concerning the particle

density ρ, which are given by:

ρp=pc ∼ t−δ (ǫ = 0)

ρt→∞ ∼ ǫβ (ǫ > 0)
, (2)

where ǫ ≡ |p− pc| is the distance from criticality, and δ and β are two of the critical

exponents of the PCPD system. A conjecture by Grassberger [1] and Janssen [2] states

that all systems with a single order parameter and a single absorbing state will belong

to the universality class of the Directed Percolation (DP) model. The critical exponents

of the one-dimensional DP model are known to very high accuracy (δ = 0.159464(6) and

β = 0.276486(8)) [3]. The values for δ and β of the PCPD model have been disputed

extensively, with estimates of δ ranging from 0.16(1) to 0.27(4) and estimates of β
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varying from β < 0.34 to β = 0.58(1) [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. For

a more extensive overview, see [4]. The main interest in the PCPD model is whether it

shares its critical exponents with DP, or not; the latter would disprove the Grassberger-

Jansen conjecture.

The difficulties with the determination of the exponent δ of the PCPD model is

that there are large finite-time corrections [4, 16], and the effective exponent thus shows

a drift with simulation time. In this paper we generate high-quality data, exploiting

the computational power of graphics processing units (GPUs); a description of the

implementation will be published elsewhere. We then analyze these data in a way that

suppresses the leading finite-time corrections.

2. Simulation results

At criticality, the asymptotic decay of the density is described by a power-law of the

form ρ(t) ∼ t−δ. For the DP model the corrections to this power-law decay very rapidly,

and therefore δDP is known with very high accuracy. However, as the history of the

PCPD model shows, the density decay in the PCPD model does not show such a clean

power-law in the time range accessible to computer simulations. Consequently, one

must account for finite-time corrections, in order to obtain an accurate estimate of δ.

Different finite-time corrections have been proposed in the past, including logarithmic

corrections [11] and power-law corrections [13]. Our data suggest power-law corrections,

so that the density decay at the critical point is given by

ρ(t) = c1t
−δ + c2t

−δ2 + . . . , (3)

with δ < δ2 < . . .. By differentiating the logarithm of the density vs. the logarithm

of the time, one can define an effective decay exponent as

δeff(t) ≡ −
∂ log(ρ)

∂ log(t)
≈ δ +

c2
c1
(δ2 − δ)t−(δ2−δ) + . . . . (4)

Note that in the limit of infinite time, the effective exponent δeff approaches the true

asymptotic value δ. Moreover, the direction from which it approaches the asymptotic

value is governed by the sign of c2/c1, and the speed of convergence by the gap δ2 − δ.

At this point, we want to make some practical remarks:

i) In practice with simulation data, the differentiation is carried out numerically,

and one makes the approximation δeff ≈ − log(ρ(2t)/ρ(t))
log 2

.

ii) When simulation measurements of δeff are presented, it is usually more convenient

for the eye if the presentation is such that the infinite-time behavior is inside the plot,

rather than at infinite distance. A common approach to achieve this, is to plot δeff as

a function of 1/t; this is not a good idea! If the gap is less than 1, the approach to the

vertical axis will eventually become infinitely steep, and it is hard to predict how far

an infinitely steep curve will shoot up (or down). Ideally, one should therefore plot δeff
as a function of t−(δ2−δ), as then the approach to the vertical axis will follow a straight
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line (and indirectly provide information on δ2 − δ). Alternatively, one can plot δeff as a

function of ρ(δ2/δ−1).

iii) Besides the particle density ρ, another numerically accessible quantity is the

pair density ρp, defined as the fraction of neighboring sites, both of which are being

occupied by a particle. For the pair density at the critical point, relations equivalent to

eqs.(3) and (4) can be defined. Barkema and Carlon [13] provided numerical evidence

that the ratio of the densities of single particles and pairs tends to a constant; further on

in this paper we will confirm this. This has as a consequence that the asymptotic density

decay of singles and pairs is governed by a unique exponent δ. Also, this means that as

long as the effective exponents δeff and δp,eff do not coincide, finite-time corrections are

still significant.

The first results, presented in figure 1, are measurements of δeff as a function

of ρ, for values of p close to the critical point, on either side. The figure shows

that δeff approaches its asymptotic value from above. Assuming that at the end of

our simulations, corrections are dominated by δ2, this indicates that c2 is positive.

Furthermore, under this assumption, the maximal value of δeff with a p value lying in

the inactive phase provides an upper bound for the asymptotic exponent: δ < 0.19

at p = 0.15247. This bound is less tight then the bound reported by Hinrichsen[16],

because it depends strongly on the maximal simulation time of the dataset, which was

higher in Hinrichsen’s simulation, and less on the accuracy of the dataset, which is

higher in our simulations. We do however confirm the conclusion of Hinrichsen that

most of the values reported for the exponent δ in PCPD are ruled out by this upper

bound.

Interestingly, the data in figure 1 are consistent with a linear convergence to

an asymptotic value of δ = δDP . The most important conclusion drawn from this

observation is that our data do not provide evidence of a violation of the Grassberger-

Janssen conjecture; and since the product of system size, length of the simulations, and

the number of these is higher in our simulations than in earlier studies which claim to

provide evidence for violation of the conjecture, our conclusion is that earlier claims

of such violation based on numerical measurements of δeff are ill-founded. A second

observation is that the observed linear convergence indicates that δ2/δ−1 ≈ 1 and thus

that δ2 ≈ 2δ. Although our simulations are more extensive than those of earlier reports,

the data is still not accurate enough to unambiguously rule out combinations of (δ, δ2)

which are slightly different from (δDP , 2δDP ); in particular there is quite some ambiguity

in δ2.

We now turn to an accurate estimation of the critical point pc. For this, we want

to capitalize on our numerical knowledge on the value for the correction exponent δ2,

to suppress finite-time corrections. We do so by defining an adjusted density:

ρ∗(t) = 2ρ(t)− ρ(2−1/δ2t), (5)

for some assumed value of δ2. Asymptotically, the densities ρ(t) and ρ∗(t) at the

critical point will coincide, but at long but not infinite times, the corrected density
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Figure 1. The effective exponent δeff as obtained for both the particle density ρ

(colored black) and the pair density ρp (gray), as a function of the particle density, with

a diffusion factor d = 0.5. For d = 0.25 and d = 0.75, we found similar results. Starting

from low to high in the picture, the simulations are performed with p = 0.15246 (1600

runs), 0.15247 (3300 runs), 0.152475 (7400 runs) and 0.152485 (1000 runs). The lattice

contained L = 218 = 262144 sites. Each simulation reached a time of approximately

t = 1.6 · 107. The curve for p = 0.152475 is closest to the critical value, which we

estimate to be pc = 0.152473(2). The straight line signifies a possible extrapolation to

δ = δDP.

suppresses correction terms with exponents δi close to δ2; with the correct numerical

choice for δ2 the first correction term will even be completely removed, and for a

reasonable approximation of δ2, the power-law decay of ρ∗(t) should be much cleaner

than that of ρ(t).

Figure 2 shows the corrected density and corrected pair density as a function of

time in a log-log plot, with the choice δ2 = 2δDP = 0.319. This gives us the estimate

δ = 0.165(10). We conclude that the choice of δ2 tightly defines our estimates of both

δ and pc.

An accurate method to determine the critical point pc is to use a data collapse

method on the corrected density ρ∗. The data collapse method maps the dataset with

off-critical p values onto a single curve for p > pc and a second curve for p < pc, if we

select the correct values for δ, β and pc. To achieve this, the (pair) density and the time

are rescaled as follows:

t′ = ǫβ/δt, ρ′ = ǫ−βρ∗. (6)

Using the diffusion factor d = 0.5, we obtain a very good data collapse, shown

in figure 3. We find that the critical value is pc = 0.152473(2). Our estimate of the

exponent β is less precise then our estimate of δ: β = 0.31(4), which is consistent with

the value known for DP: β = 0.2765. The fact that the curve for p = 0.15240 shows a

statistically significant increase, after reaching a (pseudo-)equilibrium, indicates that the
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Figure 2. Corrected particle density ρ∗ (black) and corrected pair density ρ∗p (gray)

as a function of time, for d = 0.25, p = 0.125142 (dashed); d = 0.5, p = 0.152475

(solid); and d = 0.75, p = 0.191790 (dotted-dashed). In the correction procedure, we

used δ2 = 0.319 and a lattice size of L = 218 = 262144. The thick black line shows a

possible line with δ = δDP.

corrections due to finite time and due to off-critical values for p are not simply additive:

our procedure to suppress the leading finite-time corrections at pc is not working equally

well for the off-critical curves. The ‘best’ value we find for β is therefore still experiencing

significant corrections to scaling.

The question that remains is how these parameters depend on our choice for δ2.

We used the same methods described above to obtain estimates with δ2 ranging from

0.319 to 0.5. The results are presented in Table 1. Note that for our choice δ2 = 0.319,

the leading exponent δ shows little dependence on the diffusion coefficient d.

In Ref. [4] the leading correction term ∼ t−δ2 was removed by using a linear

combination of the density ρ and the pair density ρ∗. This is a valid strategy as long

as the dominant correction term (c2t
−δ2) does not cancel in the ratio ρ/ρp. In that case

this ratio will asymptotically go to a constant with a power law (at criticality):

ρ/ρp = k1 + k2t
δ−δ2 + . . . (7)

Thus, if the density ratio ρ/ρp is plotted against tδ−δ2 , one should find a straight

line (with finite-time corrections from higher-order correction terms). Since we found

previously that δ2 ≈ 2δ, we have plotted the ratio versus the density ρ in figure 4. The

density ratios for the three values of d are clearly not approaching the vertical axis under

a fixed angle in this plot, but seem to arrive horizontally at ρ = 0. Thus, we find that

the leading correction disappears in the ratio and the method described in [4] fails.

We plotted the ratio against tδ−∆ and we found that the most straight line has a

value of ∆ ≈ 0.51. The large discrepancy between δ2 and ∆ increases our confidence in

the fact that the correction term ∼ t−δ2 vanishes in the ratio ρ/ρp.
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Figure 3. Data collapse of curves obtained with various values for p at d = 0.5.

The rescaled corrected density is plotted as a function of rescaled time (see Eqs. (6)).

The data are obtained from the same simulations as in Fig. 1; added to these data are

simulations with p = 0.1524 (500 runs on a smaller lattice with L = 65536), p = 0.15242

(1000 runs), p = 0.15245 (1000 runs), p = 0.15248 (500 runs) and p = 0.1525 (1000

runs). In the correction procedure, we used δ2 = 0.319. In the rescaling, we used

δ = 0.159 and β = 0.2765 as in the DP model, combined with pc = 0.152473.

Table 1. Values for the exponents δ and β and critical point pc, obtained by our

analysis approach, for three values of the diffusion coefficient d and for our estimated

value δ2 = 0.319, as well as for some other values for δ2.

d δ2 δ β pc
0.25 0.319 0.176(8) - 0.125141(2)

0.5 0.319 0.164(4) 0.31(4) 0.152473(2)

0.75 0.319 0.159(4) - 0.191789(2)

0.25 0.37 0.187(8) - -

0.5 0.37 0.175(4) 0.32(4) 0.152476(2)

0.75 0.37 0.165(4) - -

0.25 0.43 0.190(8) - -

0.5 0.43 0.181(4) 0.32(4) 0.152476(2)

0.75 0.43 0.172(4) - -

0.25 0.5 0.195(8) - -

0.5 0.5 0.185(4) 0.33(4) 0.152477(2)

0.75 0.5 0.177(4) - -
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Figure 4. Left panel: ratio ρ/ρp of the particle and pair densities, as a function

of the particle density. Right panel: same data, plotted as a function of tδ−∆ with

∆ = 0.51. The different curves correspond to d = 0.25 (solid line), d = 0.5 (larger

dashes) and d = 0.75 (smaller dashes). Curves are shifted vertically by some arbitrary,

d-dependent constant c(d), to let them fit nicely into a single figure; lower curves

correspond to higher values of d.

Thus, the ratio between the particle density and the pair density goes to a constant

even faster than expected. This still means that the exponent δ is equal for the particle

and the pair density.

3. Summary and conclusion

We have performed extensive simulations of the one-dimensional PCPD model, using a

highly efficient GPU-based simulation approach. The analysis of the simulation results

was performed in a way that takes account of finite-time effects. Our main goal was to

verify the Grassberger-Janssen conjecture, which predicts that the exponents for PCPD

coincide with those of directed percolation.

We find that our data are consistent with DP values for the exponents δ which

describes the decay of the particle density at the critical point, and β which describes

the asymptotic particle density for simulations close to the critical point, but slightly in

the active phase.

Additionally, we find that the the leading correction exponent δ2 is numerically

found to be close to 2δ, which would suggest corrections to scaling of order ρ2. We also

find that these leading corrections do not seem to manifest themselves in the ratio of

the particle and pair densities.

Under the assumption that the Grassberger-Janssen conjecture is correct, we find

strong indications that δ2 ≈ 2δ, by using the corrected density. There is a small

dependence of δ on the diffusion factor d. We attribute this to the differences in

the amplitudes of the second- and higher-order corrections. This induces a (small)

systematic error in the values for δ given in Table 1.
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