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Abstract.

We consider a one-dimensional system of Brownian particles that repel each other

through a logarithmic potential. We study two formulations for the system and the

relation between them. The first, Dyson’s Brownian motion model, has an interaction

coupling constant determined by the parameter β > 0. When β = 1, 2 and 4,

this model can be regarded as a stochastic realization of the eigenvalue statistics of

Gaussian random matrices. The second system comes from Dunkl processes, which are

defined using differential-difference operators (Dunkl operators) associated with finite

abstract vector sets called root systems. When the type-A root system is specified,

Dunkl processes constitute a one-parameter system similar to Dyson’s model, with

the difference that its particles interchange positions spontaneously. We prove that

the type-A Dunkl processes with parameter k > 0 starting from any symmetric initial

configuration are equivalent to Dyson’s model with the parameter β = 2k. We focus

on the intertwining operators, since they play a central role in the mathematical

theory of Dunkl operators, but their general closed form is not yet known. Using

the equivalence between symmetric Dunkl processes and Dyson’s model, we extract

the effect of the intertwining operator of type A on symmetric polynomials from these

processes’ transition probability densities. In the strong coupling limit, the intertwining

operator maps all symmetric polynomials onto a function of the sum of their variables.

In this limit, Dyson’s model freezes, and it becomes a deterministic process with a final

configuration proportional to the roots of the Hermite polynomials multiplied by the

square root of the process time, while being independent of the initial configuration.
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1. Introduction

Our object of study is a multivariate stochastic process that describes the Brownian

motion of N particles on the line. These particles interact repulsively with a magnitude

given by the inverse of their relative distances. There are two formulations for this

stochastic process. The first of the two, Dyson’s Brownian motion model, was introduced

as the stochastic process that the eigenvalues of a Gaussian random matrix undergo

when its entries are independent Brownian motions [1]. In this sense, Dyson’s model is

a dynamic version of Gaussian random matrices [2], and therefore both models share the

same parameter β for each of the three Gaussian ensembles of random matrices, 1, 2 and

4 for the Gaussian orthogonal, unitary and symplectic ensembles, respectively [2, 3, 4].

While β is usually considered as a discrete parameter, here we will treat it as a real

positive parameter. In that case, the interaction in Dyson’s model is characterized by

the coupling constant β/2 [5]. Additionally, in view of the fact that the joint probability

density function of the eigenvalues of Gaussian random matrices has the form of the

partition function of a one-dimensional log-gas [3], β also carries the meaning of inverse

temperature. The vicious walker model formulated by Fisher [6] consists of N random

walkers who annihilate each other if they make contact; one of the most particular

properties of Dyson’s model is that for β = 2, Dyson’s model is a diffusion scaling limit

of the vicious walker model with the restriction that no walkers annihilate [7]. This

restriction is equivalent to conditioning the N particles never to collide, and therefore

this process is also known as the non-colliding Brownian motion [8, 9]. Due to this

connection, Dyson’s model has found applications in polymer networks [10, 11], traffic

models [12], gauge fields and nuclear physics [13, 14, 15, 16, 17], and random growth

models [18, 19], among others. In particular, Dyson’s model has been applied extensively

in the Kardar-Parisi-Zhang universality class [20, 21, 22, 23, 24, 25, 26], and there

have been recent experimental observations of phenomena pertaining to it that confirm

theoretical predictions [27, 28]. Also, because of its relationship with the vicious walker

model, Dyson’s model is intimately related to the mathematical areas of combinatorics,

group theory and representation theory [29, 30, 31, 32].

The second system we consider, the type-A Dunkl processes, is a particular case

of Dunkl processes. In general, these processes are defined using Dunkl operators,

{Ti}1≤i≤N , a set of differential-difference operators [33] that depend on a series of

parameters and a finite set of vectors. This set of vectors is called root system (see

Appendix A). In this paper, we will focus on the root system of type A and its

corresponding Dunkl operators given by [34]

Tif(x) =
∂

∂xi

f(x) + k
N
∑

j:j=1
j 6=i

f(x)− f(σijx)

xi − xj

, (1)

where k ≥ 0 is a real scalar parameter, x is a vector in R
N , σijx denotes the vector

x with its i-th and j-th components interchanged and the function f is an arbitrary

differentiable scalar function. These operators are related to spatial partial derivatives
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by Dunkl’s intertwining operator Vk [35]. Consider a function f(x) as in (1). Then, Vk

is defined by the following equation:

TiVkf(x) = Vk
∂

∂xi

f(x). (2)

Also, Vk is defined to have no effect on constants (i.e. Vk1 = 1) and when it is applied

on a monomial of a given degree, it produces a homogeneous polynomial of the same

total degree. Note that Vk is different for each type of Dunkl operator. Through the

use of Vk, many calculations are simplified, as it allows Dunkl operators to be treated

as partial derivatives. However, no general closed form for it has been found. We will

show how Vk transforms the heat equation to obtain Dunkl processes as follows [36].

Let us denote the Laplacian operator by

∆(x) =

N
∑

i=1

∂2

∂x2
i

. (3)

The N -dimensional heat equation is given by
(

∂

∂t
− 1

2
∆(x)

)

p0(t,y|x) = 0, (4)

where p0 is the N -dimensional heat kernel. When regarded as a Kolmogorov backward

equation with a given initial condition, the heat equation defines an N -dimensional

Brownian motion, as it produces the transition probability density (TPD) that describes

its evolution (the heat kernel). Let us apply Vk on (4):

0 = Vk

(

∂

∂t
− 1

2
∆(x)

)

p0(t,y|x) =
(

∂

∂t
− 1

2

N
∑

i=1

T 2
i

)

Vkp0(t,y|x), (5)

where we have used (2) and the fact that Vk has no effect on the time variable.

Note that (5) has the form of a heat equation in which Dunkl operators appear

instead of spatial partial derivatives. This is called the Dunkl heat equation, and

it depends on the type of Dunkl operators chosen. As before, we can regard the

Dunkl heat equation as a Kolmogorov backward equation and use it to define Dunkl

processes. The associated TPD describes Dunkl processes’ evolution. Hence, different

root systems define different kinds of Dunkl processes. In the case of the type-A

Dunkl operators (1), the corresponding type-A Dunkl processes are a one-parameter

family of stochastic processes, representing N particles undergoing Brownian motion

and interacting repulsively through a logarithmic potential with the coupling constant

k > 0 [36]. However, these particles do not only repel each other, but they exchange

places due to the operator σij in (1), which is different from Dyson’s model. Dunkl

processes subject to symmetric initial conditions with respect to their respective root

systems are called radial Dunkl processes [37, 38], and their properties have been an

active topic of research in recent years [39, 40]. In order to emphasize their variable

exchange symmetry, we will refer to the type-A radial Dunkl processes as symmetric

Dunkl processes.
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While initially defined as a tool to study multivariate orthogonal polynomials [33],

Dunkl operators have also been used in harmonic analysis [41] and stochastic processes

[42]. In mathematical physics, they have been used for the study of the Calogero-Moser

(CM) systems [43, 44, 4]. These are quantum many-body integrable systems in which

N particles constrained to move in one dimension are confined by an external harmonic

potential and interact with each other through a potential proportional to the square

of the inverse of their relative distance. There are several versions of these systems,

e.g. instead of the real line, the N particles can be confined to the unit circle (the

Calogero-Sutherland model [45, 46, 47]) and can be given spin-like internal degrees of

freedom [48]. Within our context, the most natural example is the CM system with

particle exchange interaction considered by Polychronakos in [49], which is described by

the Hamiltonian

HXCM = −1

2
∆(x) +

k2

2

N
∑

i=1

x2
i +

∑

1≤i<j≤N

k(k − σij)

(xi − xj)2
. (6)

Here, k and σij are the same as in definition (1). Dunkl operators are used in this case

to simplify the Hamiltonian (6) after transforming it using the function e−kW , where

W (x) =
∑N

i=1 x
2
i /2−

∑

i<j log |xi − xj|:

H̃XCM = −1

k
ekW (HXCM − E0)e

−kW =
1

2k

N
∑

i=1

T 2
i −

N
∑

j=1

xj
∂

∂xj
. (7)

Here, E0 = [kN + k2N(N − 1)]/2. Using this simplified form, one can show that this

system is integrable (see [4]).

After reviewing Dyson’s model briefly in Section 2.1, we will show in Section 2.2

that the TPD of symmetric Dunkl processes obeys a Kolmogorov backward equation

that is identical to that of Dyson’s model (Theorem 1). Therefore, their TPDs are

equivalent and a relationship between the Dunkl parameter k and the parameter β in

Dyson’s model is established. This relationship provides a physical meaning to the

abstract Dunkl parameter k, that is, k can be understood as a parameter proportional

to the inverse temperature. In Section 3, we will review the intertwining operator and

its defining properties. In Section 4.1, we will extract the effect of the intertwining

operator on symmetric polynomials from the TPDs of Dyson’s model and symmetric

Dunkl processes using Theorem 1. This is the result of Theorem 2. In order to gain a

better understanding of this result, we will make observations on the particular case of

quadratic symmetric polynomials in Section 4.2. We will find that in the k → ∞ limit,

Vk turns all symmetric functions into a function of the sum of their variables. We will

prove this fact in Section 4.3 as Theorem 3. Finally, in Section 5 we will make use of

the behaviour of Vk→∞ to investigate the limit k = β/2 → ∞ (strong coupling limit)

of the TPD of the symmetric Dunkl process (or its equivalent Dyson’s model). We will

prove in Theorem 4 that in this limit, which we call the freezing regime, this process

becomes deterministic and its final configuration is proportional to a vector composed

of the roots of the N -th Hermite polynomial multiplied by the square root of the process
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time. We will also find that the form of Vk→∞ causes the symmetric Dunkl process to

be independent of its initial condition in the freezing regime.

2. Dyson’s Brownian Motion Model and Dunkl Processes

2.1. Dyson’s Brownian Motion Model

Dyson’s Brownian motion model [1] is a stochastic process in which N particles undergo

Brownian motion in one dimension while interacting repulsively with each other with a

strength proportional to the inverse of the distances between them. Dyson’s model is

described by the Kolmogorov backward equation (see, e.g. Remark 1 in [5])

∂

∂t
Pβ(t,y|x) =

1

2
∆(x)Pβ(t,y|x) +

β

2

N
∑

i=1

N
∑

j=1:
j 6=i

1

xi − xj

∂

∂xi

Pβ(t,y|x), (8)

where Pβ(t,y|x) is the TPD that the particles reach the positions y = (y1, . . . , yN) after

a time t, given that they started from x = (x1, . . . , xN). While we denote vectors in

R
N using boldface symbols, we will use the notation x2 = x · x to denote their squared

norm.

Note that when β → 0, the interaction term in (8) vanishes leaving an N -

dimensional Brownian motion, which means that the fluctuations in the system are

much larger in magnitude than the interaction between particles. On the other hand,

when β → ∞, the diffusion term is negligible compared to the interaction term, and so

the randomness in the system disappears. In other words, the system freezes.

A consequence of the results in [50] and [42] (see, e.g. [37]) is that, for N -

dimensional vectors x and y ordered so that yi < yj and xi < xj for i < j, the

TPD of Dyson’s model is given by

Pβ(t,y|x) =
N !e−(x2+y2)/2t

(2πt)N/2

N
∏

j=1

[

Γ(1 + β/2)

Γ(1 + jβ/2)

]
∣

∣

∣

∣

hN

(

y√
t

)
∣

∣

∣

∣

β

0F (2/β)
0

(

x√
t
,
y√
t

)

, (9)

where Γ(x) is the gamma function, hN(y) =
∏

1≤i<j≤N(yj − yi) is the Vandermonde

determinant and 0F (2/β)
0 is the generalized hypergeometric function (see Appendix B).

In the case β = 2, the non-colliding Brownian motion, Dyson’s model has the following

TPD as shown by Grabiner [8]:

Pβ=2(t,y|x) =
hN (y)

hN(x)
det

1≤i,j≤N

(

e−(xi−yj)2/2t

√
2πt

)

. (10)

2.2. Dunkl Processes

Within our present setting, we are interested in the type-A Dunkl operators given by

(1) (see Appendix A and Appendix C). Using these operators, one can define Dunkl



Interacting Particles on the Line and Dunkl Intertwining Operator of Type A 6

processes as follows [42]: consider the TPD, pk(t,y|x), that solves the Dunkl heat

equation with the parameter k

∂

∂t
pk(t,y|x) =

1

2

N
∑

i=1

T 2
i pk(t,y|x) (11)

as its Kolmogorov backward equation. Then the stochastic process that obeys pk(t,y|x)
as its TPD is defined as the Dunkl process of type A. Direct insertion of (1) into (11)

yields [34]

∂

∂t
pk(t,y|x) =

1

2
∆(x)pk(t,y|x) +

N
∑

i=1

N
∑

j=1:
j 6=i

k

xi − xj

∂

∂xi
pk(t,y|x)

− k

2

N
∑

i=1

N
∑

j=1:
j 6=i

pk(t,y|x)− pk(t,y|σjix)

(xj − xi)2
. (12)

Reading off the terms of this Kolmogorov backward equation gives us information about

Dunkl processes: the first term, a Laplacian acting on x, is a diffusion term, while the

second term is a drift term that drives the process away from the surfaces defined by

the equations xi = xj for any i 6= j. The third term is a spontaneous jump term, which

makes the process jump from x to σijx for some i 6= j so long as pk(t,y|x) is not

symmetric under permutations of x.

With the observation about the jump term in mind, comparing (8) and (12) reveals

a clear similarity between the two Kolmogorov backward equations. Let us define the

symmetric group SN as the set of all the permutations of N objects with composition

as its group operation. The permutation ρ ∈ SN of the vector x is given by

ρx = (xρ(1), . . . , xρ(N)). (13)

We will consider the TPD of a Dunkl process with a symmetric initial condition. As

mentioned in Section 1, we will call such processes symmetric Dunkl processes. Given

the symmetric distribution

µs
x(z) =

∑

ρ∈SN

δN(z − ρx), (14)

where we define δN(x− y) =
∏N

j=1 δ(xj − yj), we write

psk(t,y|x) =
∫

RN

pk(t,y|x)µs
x(z) d

Nz =
∑

ρ∈SN

pk(t,y|ρx), (15)

with dNz =
∏N

j=1 dzj . In the following theorem, we show that the Kolmogorov

backward equation obeyed by the TPD of the symmetric Dunkl process, psk(t,y|x),
is identical to that of the TPD of Dyson’s model, as noted by Demni [37].

Theorem 1. The TPD of a symmetric Dunkl process, psk, solves the Kolmogorov

backward equation of Dyson’s model with parameter

β = 2k. (16)
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That is, the equivalence

psk(t,y|x) = Pβ=2k(t,y|x) (17)

is established.

Proof. Comparing (12) and (8), we see that the only difference between the two is the

third term on the RHS of (12). Because none of the sums on the RHS of (12) change

if the order of the summands is permuted, it follows that psk(t,y|x) is also a solution

of (12). In particular, since psk(t,y|x) is symmetric in x, the third term on the RHS of

(12) vanishes, leaving us with (8) provided we set k = β/2.

Note that, because pk(t,y|x) is a probability density function on y, its integral

with respect to y over R
N is equal to one, and so psk(t,y|x) integrates to N !. We will

exploit the equivalence between Pβ and psk in Section 4.

3. The Intertwining Operator

In the previous section we obtained some information about the TPD of Dunkl processes

and how it is related to Dyson’s model. However, this TPD can also be calculated using

the intertwining operator Vk, (2) [34, 35] (see Appendix C for details).

Dunkl originally defined Vk for the case in which the function f(x) in (2) is a

polynomial, and proved its existence for k ≥ 0 using a recursive construction. However,

its explicit form is unknown in general, and known only in a few particular cases. From

(1), one can note that when k = 0, the intertwining operator is the identity operator.

The intertwining operator relates N -dimensional Brownian motion to Dunkl

processes as follows. Let us consider the N -dimensional heat equation (4) with its

solution

p0(t,y|x) =
e−(x2+y2)/2t

(2πt)N/2
ex·y/t (18)

given the initial condition p0(0,y|x) = δN(x − y). This solution is both the Green

function of the diffusion equation and the TPD of the N -dimensional Brownian motion.

When we apply Vk on (4), we obtain the Dunkl heat equation. From this, we deduce

that the Green function for the Dunkl heat equation, which we denote by Γk(t,y|x), is
given by

Γk(t,y|x) = Vkp0(t,y|x). (19)

On the other hand, the Green function for the Dunkl heat equation can be calculated

directly using the Dunkl transform [41], a generalization of the Fourier transform, in

the same way that the Fourier transform can be used to derive (18), see [42]. In order

to define the Dunkl transform, one needs to calculate the eigenfunction Ek(x, ξ) of

the Dunkl operators {Ti}i=1,...,N of parameter k with eigenvalues ξ = (ξ1, . . . , ξN), also

known as the Dunkl kernel [35]:

TiEk(x, ξ) = ξiEk(x, ξ), i = 1, 2, . . . , N, (20)
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under the condition Ek(0, ξ) = 1 with 0 = (0, . . . , 0). It can be expressed as

Ek(x, ξ) = Vke
ξ·x. (21)

One can prove that this function solves Equation (20) as follows:

TiEk(x, ξ) = TiVke
ξ·x = Vk

∂

∂xi

eξ·x = ξiVke
ξ·x = ξiEk(x, ξ). (22)

Here the second equality follows from the definition of the intertwining operator and

the third equality follows from the fact that Vk is linear. In addition, when Ek(x, ξ) is

written as a power series, each term is a homogeneous polynomial of x, whose degree

is conserved by Vk. When the limit x → 0 is taken, all homogeneous polynomials of

degree larger than zero vanish and the only remaining term (the zero-order polynomial)

is equal to one. Ek(x, ξ) is sufficiently well behaved to be used as the kernel for the

aforementioned Dunkl transform [36] by replacing x with −ix.

With this transform, one can calculate Γk(t,y|x) and the TPD of Dunkl processes

in general (see Appendix C, (C.10) for the explicit relationship between Γk and pk).

However, because the Dunkl kernel is contained in it, and the intertwining operator is

unknown in general, this TPD is not explicitly specified. In our case, pk(t,y|x) is given
by

pk(t,y|x) =
N
∏

j=1

Γ(1 + k)

Γ(1 + jk)

∣

∣

∣

∣

hN

(

y√
t

)
∣

∣

∣

∣

2k
e−(x2+y2)/2t

(2πt)N/2
Ek

(

x√
t
,
y√
t

)

. (23)

The last factor on the right is the only unknown part of this TPD. Let us note that

in order to obtain pk, we need the Dunkl kernel, which in turn requires us to calculate

the effect of the intertwining operator on the exponential ex·y. Conversely, if we have

pk, we can obtain the Dunkl kernel, and by expanding it into sums of suitably chosen

polynomials, we can extract the effect of the intertwining operator on any polynomial.

4. Extraction of Vk from Dyson’s model

4.1. Theorem

Here, we will obtain an expression for the effect of Vk on symmetric polynomials. Using

Theorem 1, we combine (15) and (23), equate the result to (9), and rescale x and y by

a factor of
√
t to obtain
∑

ρ∈SN

Ek (ρx,y) = N !0F (1/k)
0 (x,y) . (24)

From (24), we extract the effect of the intertwining operator when applied to a symmetric

polynomial.

As preparation for the sequel, let us introduce the following definitions [32]: a

partition τ of an integer n is a non-negative integer vector such that its components

are arranged in decreasing order while adding up to n. The components of τ are called

parts, and its length, l(τ), is the number of non-zero parts in it. The sum of its parts
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is called the modulus of the partition and is denoted by |τ |. In other words, τ is an

integer partition of n if τi ≥ τj for i < j, and

|τ | =
l(τ)
∑

i=1

τi = n. (25)

For example, τ = (τ1, τ2, . . .) = (4, 4, 2, 0, . . .) is an integer partition of n = 10 and has

length 3. Additionally, the symbol τ ! denotes the product
∏l(τ)

j=1 τj!. We will also use

the natural ordering for partitions of the same integer defined by

λ < τ ⇔ λ1 + . . .+ λj ≤ τ1 + . . .+ τj
∀j = 1, . . . , N, (26)

where λ and τ are assumed to be different partitions.

We say that the ordered pair (i, j) is in the partition τ (i.e. (i, j) ∈ τ) when

1 ≤ i ≤ l(τ) and 1 ≤ j ≤ τi. The number τ ′j is the number of parts τl such that τl ≥ j.

Finally, the partition formed by the τ ′j is denoted by τ ′, and it is called the conjugate

partition of τ .

We will make immediate use of two particular families of symmetric polynomials,

the monomial symmetric functions and the Jack functions. Given an integer partition

τ , the monomial symmetric functions are given by

mτ (x) =
∑

σ

N
∏

j=1

x
τσ(j)

j , (27)

where the sum is taken over all permutations σ such that each monomial
∏N

j=1 x
τσ(j)

j

is distinct. It is known that the Jack functions are part of the eigenfunctions of the

periodic type-A Calogero-Moser-Sutherland model [51]. They are also used to calculate

the symmetric eigenfunctions of the type-A Calogero-Moser system described by the

Hamiltonian (6). Within our context, they are useful to describe the action of Vk. The

Jack function of parameter 1/k > 0, P(1/k)
τ (x), is defined as the polynomial eigenfunction

of the operator [52]
(

N
∑

i=1

x2
i

∂2

∂x2
i

+ 2k
∑

1≤i 6=j≤N

x2
i

xi − xj

∂

∂xi

)

P(1/k)
τ (x) = Eτ,kP(1/k)

τ (x) (28)

with eigenvalue

Eτ,k =
N
∑

j=1

τj [τj − 1− 2k(j − 1)] + |τ |(N − 1). (29)

Let lµj represent the multiplicity of the j-th (distinct) part of µ, where the subscript

P in lµP refers to the number of distinct parts of µ. In the cases where l(µ) < N ,

there are N − l(µ) zero parts in µ and therefore lµP = N − l(µ) accounts for the

multiplicity of zero parts in the first N parts of µ. For example, if N = 6 and

µ = (5, 3, 2, 2) = (5, 3, 2, 2, 0, 0), then P = 4 and lµ1 = 1, lµ2 = 1, lµ3 = 2 and lµ4 = 2.

Using this notation we define the following multinomial coefficient:

M(µ,N) =
N !

lµ1 ! · · · lµP !
. (30)
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This function represents the number of distinct permutations of µ when it is considered

as an N -dimensional vector.

See Appendix B for the representation of Jack functions in terms of the monomial

symmetric functions and the definitions of the matrix {uτλ(1/k)}, the generalized

Pochhammer symbol (kN)
(1/k)
τ and the constants cτ (1/k) and c′τ (1/k).

Theorem 2. The action of the intertwining operator on a symmetric polynomial is

given by the equation

Vkmλ(x) = λ!M(λ,N)
∑

τ :l(τ)≤N
|τ |=|λ|

cτ (1/k)

c′τ (1/k)

uτλ(1/k)

(kN)
(1/k)
τ

P(1/k)
τ (x). (31)

That is, the intertwining operator of type A maps the monomial symmetric functions

mλ(x) onto a linear combination of Jack functions of parameter 1/k, P(1/k)
τ (x).

Proof. We first expand the LHS of (24) in terms of symmetric polynomials. For this

purpose, we expand the symmetrized exponential
∑

ρ∈SN
exp(ρx · y) in terms of the

monomial symmetric functions mµ(x).

∑

ρ∈SN

eρx·y =
∑

ρ∈SN

∞
∑

n=0

∑

µ:l(µ)≤N
|µ|=n

1

µ!

∑

τ∈SN :
τ(µ) distinct

N
∏

j=1

(xρ(j)yj)
µτ(j)

=
∑

µ:l(µ)≤N

1

µ!

∑

τ∈SN :
τ(µ) distinct

{

∑

ρ∈SN

N
∏

j=1

x
µτ(j)

ρ(j)

}

N
∏

j=1

y
µτ(j)

j

=
∑

µ:l(µ)≤N

1

µ!

{

∑

ρ′∈SN

N
∏

j′=1

x
µρ′(j′)

j′

}

∑

τ∈SN :
τ(µ) distinct

N
∏

j=1

y
µτ(j)

j (32)

In the last line we have used the substitutions j′ = ρ(j) and ρ′(j′) = τ [ρ−1(j′)]. The last

term on the right is, by definition, mµ(y). The term inside the braces is equal to mµ(x)

multiplied by the number of non-distinct permutations of µ. Using (30), we write the

above as
∑

ρ∈SN

eρx·y =
∑

µ:l(µ)≤N

N !mµ(x)mµ(y)

µ!M(µ,N)
. (33)

Applying Vk on the above yields the LHS of (24) expanded in terms of a sum of monomial

symmetric functions. The next step is to eliminate the variable y using the orthogonality

of Jack functions. Insertion of the inverse of (B.4) in (33) after applying Vk yields

∑

ρ∈SN

Ek(ρx,y) = Vk

∑

µ:l(µ)≤N

N !mµ(x)

µ!M(µ,N)

∑

ν:ν≤µ
|ν|=|µ|

(u−1)µν(1/k)P(1/k)
ν (y). (34)
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Using (34) and (B.10), (24) becomes

Vk

∑

µ:l(µ)≤N

mµ(x)

µ!M(µ,N)

∑

ν:ν≤µ
|ν|=|µ|

(u−1)µν(1/k)P(1/k)
ν (y)

=
∑

τ :l(τ)≤N

cτ (1/k)

c′τ (1/k)

P(1/k)
τ (x)P(1/k)

τ (y)

(kN)
(1/k)
τ

, (35)

and from the orthogonality of Jack functions [32] and the linearity of Vk, which acts

only on x, we can equate the coefficients of the same Jack functions of y to obtain

∑

µ:l(µ)≤N
|µ|=|τ |

(u−1)µτ (1/k)

µ!M(µ,N)
Vkmµ(x) =

cτ (1/k)

c′τ (1/k)

P(1/k)
τ (x)

(kN)
(1/k)
τ

. (36)

This relation is solved for Vkmλ(x) if we apply the sum
∑

τ uτλ(1/k) on both sides.

From this last operation, the theorem follows.

Theorem 2 is consistent with the expected results at particular values of k. For

k = 0, Vk is reduced to the identity operator, for k = 1 one obtains the known TPD of

the non-colliding Brownian motion (10) [8], and in the case where all components of x

are equal, one recovers the known TPD of Dyson’s model when all particles start from

the same position [4, 7].

4.2. Effect of Vk on symmetric quadratic equations

Although Theorem 2 is consistent with known results, it does not give an immediate

understanding of the effect of Vk on symmetric polynomials. The purpose of this

subsection is to consider a simple case of Theorem 2 and make observations of the

general properties of Vk in order to obtain insights on the behaviour of symmetric Dunkl

processes and Dyson’s model. Let us consider the effect of the intertwining operator on

the quadratic equations m2(x) =
∑N

i=1 x
2
i = 1 and m11(x) =

∑

1≤i<j≤N xixj = 1.

Vk

N
∑

j=1

x2
j =

k + 1

kN + 1

N
∑

j=1

x2
j +

2k

kN + 1

∑

1≤i<j≤N

xixj = 1 (37a)

Vk

∑

1≤i<j≤N

xixj =
k(N − 1)

2(kN + 1)

N
∑

j=1

x2
j +

k(N − 1) + 1

kN + 1

∑

1≤i<j≤N

xixj = 1(37b)

From the coefficients of the sums above, it is clear that when k = 0 the polynomials on

the LHS are unchanged. When k = 1, these equations become

Vk=1

N
∑

j=1

x2
j =

2

N + 1

(

N
∑

j=1

x2
j +

∑

1≤i<j≤N

xixj

)

= 1, (38a)

Vk=1

∑

1≤i<j≤N

xixj =
(N − 1)

2(N + 1)

N
∑

j=1

x2
j +

N

N + 1

∑

1≤i<j≤N

xixj = 1. (38b)
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(a) Vk=0

∑3
j=1 x

2
j = 1 (b) Vk=1

∑3
j=1 x

2
j = 1 (c) Vk→∞

∑3
j=1 x

2
j = 1

(d) Vk=0

∑

1≤i<j≤3 xixj = 1 (e) Vk=1

∑

1≤i<j≤3 xixj = 1 (f) Vk→∞

∑

1≤i<j≤3 xixj = 1

Figure 1: Effect of the intertwining operator on the equations m2(x) = 1 and

m11(x) = 1.

If we take the limit k → ∞, the two quadratic equations become

Vk

N
∑

j=1

x2
j

k→∞−→ 1

N

(

N
∑

j=1

xj

)2

= 1, (39a)

Vk

∑

1≤i<j≤N

xixj
k→∞−→ N − 1

2N

(

N
∑

j=1

xj

)2

= 1. (39b)

These equations represent two pairs of planes, namely

N
∑

j=1

xj = ±
√
N and

N
∑

j=1

xj = ±
√

2N

N − 1
. (40)

We plot (37a) and (37b) for the particular case N = 3 in Figure 1. The line defined

by the vector (1, 1, 1) is represented by the diagonal line in each of the subfigures. From

the figure, we can see that as the value of k increases, the surfaces get stretched equally

in all directions orthogonal to the line. In the limit k → ∞, the surfaces become planes,

and there are two of them because we have chosen quadratic polynomials, i.e. |λ| = 2.
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From these observations, we expect that the effect of Vk→∞ on the monomial

symmetric functions mλ is to reduce them to the |λ|-th power of e1(x) =
∑N

j=1 xj .

The power must be |λ| because Vk conserves the degree of all homogeneous polynomials

by definition. We prove this fact in the following theorem.

4.3. The k → ∞ limit of Theorem 2

Theorem 3. When k → ∞, (31) becomes

lim
k→∞

Vkmλ(x) =
M(λ,N)

N |λ|

(

N
∑

j=1

xj

)|λ|

. (41)

Proof. The quantity

cτ (1/k)

c′τ (1/k)(kN)
(1/k)
τ

=
∏

(i,j)∈τ

(τi − j + k(τ ′j − i+ 1))

(k(N − i+ 1) + j − 1)(τi − j + 1 + k(τ ′j − i))

tends to zero as k → ∞ in general. The only case in which this quantity does not vanish

is when τ ′j = i for any (i, j) ∈ τ . Now, τ ′j represents the number of parts greater than

or equal to j in τ (see Appendix B), so we can conclude that this condition is satisfied

only when τ ′j = 1, i.e. τ = (τ1, 0, . . .). In other words, only partitions of length equal to

one satisfy this condition. Therefore,

cτ (1/k)

c′τ (1/k)(kN)
(1/k)
τ

k→∞−→ 0

whenever l(τ) > 1 and

cτ (1/k)

c′τ (1/k)(kN)
(1/k)
τ

=

τ1
∏

j=1

(τ1 − j + k)

(kN + j − 1)(τ1 − j + 1)

k→∞−→
τ1
∏

j=1

1

N(τ1 − j + 1)
=

1

N τ1τ1!

when l(τ) = 1. Then, Vk becomes

Vkmλ(x)
k→∞−→ λ!M(λ,N)

N |λ||λ|! aλ∗λ(e1(x))
|λ|, (42)

where λ∗ = (|λ|, 0, . . .). This is due to the fact that if l(τ) = 1, then τ ′ = (1, 1, . . . , 1),

a partition composed of ones with |λ| parts (see (B.1) and Table B1 for the definitions

of e1(x) and aτλ). We finish our calculation giving an explicit form of the matrix

components aλ∗λ by expanding (e1(x))
|λ| in terms of mτ (x). We write

(e1(x))
|λ| =

(

N
∑

j=1

xj

)|λ|

=
∑

τ :l(τ)≤N
|τ |=|λ|

|λ|!
τ !

mτ (x) =
∑

τ :l(τ)≤N
|τ |=|λ|

aλ∗τmτ (x),

and deduce that

aλ∗λ =
|λ|!
λ!

, (43)
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which proves the statement.

Note that the equation

M(λ,N)

N |λ|

(

N
∑

j=1

xj

)|λ|

= 1 (44)

clearly represents one (for |λ| odd) or two (for |λ| even) planes with normal vector equal

to

1 = (1, . . . , 1). (45)

This is consistent with Figures 1(c) and (f).

5. The Freezing Regime

The physical implications of the observations in the previous section involve the

behaviour of the symmetric Dunkl process when k tends to infinity. This limit is

equivalent to the strong coupling limit (β → ∞) of Dyson’s model. Although the

observations in the previous section suggest that the limit limk→∞

∑

ρ∈SN
Ek(ρx,y)

exists, one must be careful when taking this limit in (9). In particular, the fact that

k = β/2 is the coupling constant of the interaction between particles in Dyson’s model

implies that this interaction separates the particles infinitely fast when k → ∞. In

order to obtain an intuitive picture of what occurs, we consider the Kolmogorov forward

equation associated to (8) with the parameter k in accordance with Theorem 1:

∂

∂t
psk(t,y|x) =

1

2
∆(y)psk(t,y|x)

−
N
∑

i=1

N
∑

j=1
j 6=i

k

yi − yj

∂

∂yi
psk(t,y|x) + k

N
∑

i=1

N
∑

j=1
j 6=i

psk(t,y|x)
(yi − yj)2

. (46)

We will now apply the scaling y →
√
kv. Under this scaling, (46) becomes

∂

∂t
psk(t,

√
kv|x) = 1

2k
∆(v)psk(t,

√
kv|x)

−
N
∑

i=1

N
∑

j=1
j 6=i

1

vi − vj

∂

∂vi
psk(t,

√
kv|x) +

N
∑

i=1

N
∑

j=1
j 6=i

psk(t,
√
kv|x)

(vi − vj)2
. (47)

Furthermore, if we assume that limk→∞ psk(t,
√
kv|x)kN/2 = ps∞(t, v|x), taking the limit

k → ∞ transforms (47) into

∂

∂t
ps∞(t, v|x) = −

N
∑

i=1

∂

∂vi









N
∑

j=1
j 6=i

ps∞(t, v|x)
vi − vj









, (48)

a Kolmogorov forward equation with a drift term but without a diffusion term. This

equation suggests that the scaled process on v is actually deterministic. Physically
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speaking, this is a natural consequence of taking the k → ∞ limit, since the randomness

of Dyson’s model is removed in the freezing regime. Therefore, the argument above

implies that psk(t,
√
kv|x)kN/2 should converge to a function of the form

lim
k→∞

psk(t,
√
kv|x)kN/2 = δN [v − F (t,x)], (49)

where F (t,x) denotes the vector solution of a deterministic equation of motion.

Interestingly, the evolution of the scaled process considered above is related to the

Hermite polynomials defined by (see e.g. [53])

HN(x) = (−1)Nex
2 dN

dxN
(e−x2

). (50)

More specifically, the process described by (48) depends on the N roots of HN(x), here

denoted by

zN = (z1,N , . . . , zN,N), (51)

and their permutations ρzN , ρ ∈ SN , where zi,N is the i-th root and zi,N < zj,N for

i < j. These N roots are known to be real [54]. Also, because HN(x) obeys the relation

HN(−x) = (−1)NHN(x), (52)

its roots add up to zero, i.e.

N
∑

j=1

zj,N = 0. (53)

We address the freezing regime in the following theorem.

Theorem 4. The k → ∞ limit of the TPD psk(t,
√
kv|x)kN/2 is independent of x and

is given by

ps∞(t, v|x) = ps∞(t, v) =
∑

ρ∈SN

δN [v −
√
2tρzN ]. (54)

Proof. We first calculate the limit

lim
k→∞

∑

ρ∈SN

Ek(ρx,y). (55)

Using Theorems 2 and 3 and the expansion in (33), we obtain

lim
k→∞

∑

ρ∈SN

Ek(ρx,y) =
∑

µ:l(µ)≤N

N !mµ(y)

µ!M(µ,N)
lim
k→∞

Vkmµ(x)

=
∑

µ:l(µ)≤N

N !mµ(y)

µ!N |µ|

(

N
∑

j=1

xj

)|µ|

=
∑

µ:l(µ)≤N

N !

µ!
mµ

(

(x · 1)y
N

)

= N ! exp

(

(x · 1)(y · 1)
N

)

. (56)
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We now turn our attention to psk(t,y|x). The probability that the symmetric

Dunkl process reaches an infinitesimal volume dNy around y from x after a time t

is psk(t,y|x) dNy. This probability, after the scaling y →
√
kv equals

psk(t,y|x) dNy = psk(t,
√
kv|x)kN/2 dNv

= exp { log (psk(t,
√
kv|x)kN/2)}dNv. (57)

When k is sufficiently large one can use Stirling’s approximation [55] combined with

(15), (23) and (56) to approximate the probability density in (57) as the exponential of

k

[

N

2
(N − 1)(1− log t)−

N
∑

j=1

j log j + 2 log |hN(v)| −
v2

2t

]

+

√
k

N
(x · 1)(v · 1) + N

2
log k + log(N !)− N

2
log(2πt)− x2

2t
. (58)

Let us denote the term in the square brackets by FN (v, t). According to this expression,

in the limit k → ∞ the probability density goes to infinity whenever FN (v, t) is positive,

and vanishes when it is negative. However, this distinction is difficult to make due to

the presence of the Vandermonde determinant of v in FN(v, t). We show in Appendix

D that FN (v, t) is negative except in the points

v =
√
2tρzN . (59)

The consequence of this is that the probability density (57) vanishes at v 6=
√
2tzN or

its permutations. On the other hand, when v =
√
2tzN or its permutations, kFN(v, t)

vanishes (see Appendix D) along with the term proportional to
√
k, because the roots

of HN(x) add up to zero. That is,
√
k

N
(x · 1)(

√
2tzN · 1) =

√
2kt

N
(x · 1)

N
∑

i=1

zi,N = 0. (60)

The only k-dependent term that remains is N
2
log(k), which tends to infinity with k.

Therefore, we can write

lim
k→∞

psk(t,
√
kv|x)kN/2 dNv ∝

∑

ρ∈SN

δ[v −
√
2tρzN ]. (61)

However, we know that psk(t,
√
kv|x)kN/2 dNv is equal to N ! when integrated over RN ,

for any value of k. Similarly, the integral over RN of the sum of delta functions on the

RHS is also equal to N !. Therefore, the two quantities above are equal.

Note that the effect of limk→∞

∑

ρ∈SN
Ek(ρx,y) on the final result is that it makes

the TPD ps∞(t, v|x) independent of x. When FN (v, t) attains its maximum value, the

symmetric Dunkl kernel is equal to one for all values of x, which leaves kN/2 as the

dominating term in the limit. Therefore, the form of the intertwining operator and

the properties of the Hermite polynomials are ultimately responsible for removing the

dependence of psk on x in the freezing regime.
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6. Concluding Remarks

We established the equivalence between Dyson’s model and symmetric Dunkl processes

under the parameter relation (16) in Theorem 1. This correspondence yields a physical

interpretation of the abstract parameter k, i.e. one can regard k as a coupling constant

or a parameter proportional to the inverse temperature. We have also extracted the

effect of the intertwining operator on symmetric polynomials in Theorem 2. It is of

interest to note that the functions involved, which are commonly found in combinatorics

and representation theory [32, 31] and in the Calogero-Moser systems [45, 46, 56], are

found here through the comparison of two multivariate stochastic processes. This result

stresses that symmetric polynomials play an important role in the setting of stochastic

processes. While it is known that Schur functions are essential in the study of the non-

colliding Brownian motion (β/2 = k = 1) [7, 9, 29, 30], their role in the general k case

is played by Jack functions [50, 4], which makes them equally essential for the study of

Dyson’s model.

We showed in Theorem 3 that the limit k → ∞ of Vk for symmetric polynomials

exists and that it has a simple form. This fact allowed us to calculate the strong

coupling limit of the symmetrized Dunkl kernel, and in turn obtain the TPD of the

symmetric Dunkl process, which is the result of Theorem 4. The positions of the

Brownian particles are locked to a deterministic path, which is a natural consequence of

the small scale of the Brownian vibrations in this regime. Moreover, we pointed out two

non-trivial properties of the symmetric Dunkl process in the freezing regime. The first

of them is that the final configuration of the Brownian particles depends on the roots of

the Hermite polynomials rather than being an equally-spaced or simpler configuration.

This is a consequence of the form of the interaction between particles: the Vandermonde

determinant of v appears in psk(t,
√
kv|x) as a death factor that makes the TPD vanish

whenever vi = vj, i 6= j, pushing the particles away from each other. Furthermore, the

partial derivatives of the Vandermonde determinant are responsible for the form of the

drift term in (8) and (12). Therefore, a different interaction would lead to a different

form for the function FN (v, t), which would in turn have its maxima in points different

from zN or its permutations. The second property is that limk→∞ psk(t,
√
kv|x)kN/2

is independent of the initial configuration x. Because the process is deterministic in

this limit, one expects it to depend on the initial conditions from which it has evolved.

Contrary to this expectation, the nature of the intertwining operator at k → ∞ and the

symmetry that the roots of HN(x) obey take away that dependence.

We find that there is a similarity between the strong coupling limits of the

symmetric Dunkl processes and the Calogero-Moser system described by (6). When

k → ∞, the particles freeze at the minima of the potential in the leading (k2) term

1

2

N
∑

i=1

x2
i +

∑

1≤i<j≤N

1

(xi − xj)2
, (62)

which are known to be the roots of HN(x), zN [57]. As the particles freeze, the kinetic



Interacting Particles on the Line and Dunkl Intertwining Operator of Type A 18

term becomes negligible, and the only remaining variable term in (6) is the term of order

k. This is called the “freezing trick” [58]. What remains is known as the Polychronakos-

Frahm (PF) spin chain Hamiltonian [49, 57], and it is given by

HPF =
∑

1≤i<j≤N

σij

(zi,N − zj,N)2
. (63)

In this case as well as in the symmetric Dunkl processes, the particles freeze in positions

related to the roots of the Hermite polynomials. This fact seems to stem from the

mathematical structure of the two models, because the expressions that define them,

equations (5) and (7), depend on the Dunkl operators Ti. We suspect that there must

be an underlying physical reason for this similarity, but this is a conjecture that we leave

for future study.

While Theorem 2 allowed us to carry out the analysis of the strong coupling limit

of symmetric Dunkl processes, the expression in (31) should yield more information if it

is simplified, e.g. by considering the eigenfunctions and eigenvalues of Vk. For instance,

if we define the quantities

Bτ (k) =

√

cτ (1/k)

c′τ (1/k)(kN)
(1/k)
τ

and Q(k)
τ (x) = Bτ (k)P(1/k)

τ (x), (64)

we can rewrite (31) in two ways in matrix form as

Vkm = DAATm and VkQ = ATDAQ, (65)

where (m)λ = mλ(x) and (Q)τ = Q(k)
τ (x) are vectors with polynomial components,

and the matrices that relate them are given by (A)µτ = uτµ(1/k)Bτ (k) and (D)λµ =

λ!M(λ,N)δλµ. With these expressions, it should be possible to find a more revealing

form for Vk.

The non-symmetric case of type-A Dunkl processes is of interest due to the richness

brought on by the spontaneous jump term (the third term on the RHS of (12)). In

analogy with (31), we expect to be able to express Vk in terms of non-symmetric Jack

functions [4]. Brute-force calculations in particular cases yield

Vkxi =
xi + kx · 1
1 +Nk

(66)

in the linear case for general N and

Vkx
2
i =

2x2
i + k(x · 1)2
2(1 + 2k)

(N = 2), (67a)

Vkx
2
i =

2xi(xi + kx · 1) + k(x2 + k(x · 1)2)
(2 + 3k)(1 + 3k)

(N = 3) (67b)

for the quadratic case. All these equations point toward a relation of the form

lim
k→∞

Vkx
τ ∝ (x · 1)|τ |. (68)

If it is correct, the above relationship could yield a Dunkl kernel of a form similar to (56)

in the strong coupling limit. These two statements for the non-symmetric case remain

to be tested.
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Dumitriu and Edelman [59] have carried out a freezing regime analysis of the

eigenvalues of the tridiagonal random matrix β-ensembles. Their study includes not

only the eigenvalue behaviour at β → ∞, but also the first-order corrections at large

finite values of β (Theorem 3.1). It can be shown, using (31) combined with (23), that

the statistics of the final positions of symmetric Dunkl processes starting from the initial

condition x = 0 at t = 0 coincides with the eigenvalue statistics of the β ensembles with

β = 2k. Therefore, we expect to obtain the first-order correction for large finite values

of k for the present symmetric Dunkl processes as well. However, due to the nature of

our formulation, we will have to investigate the first order (O(1/k)) correction of Vk.

We intend to address this calculation in the near future.

Finally, the existence of explicit forms for the symmetrized Dunkl kernel for the

type-B and type-D root systems, as given in [50, 60], should allow for an analysis similar

to that in this work on other types of Dunkl processes. In particular, we expect the

radial type-B Dunkl process to be related with the type-B PF spin chain [61] in a

manner similar to the symmetric Dunkl processes and the PF spin chain described by

(63).
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Appendix A. Root Systems and Multiplicity Functions

The definition of a root system depends on the reflection operator [36], which is given

by

σαx = x− 2
x ·α
α ·αα, (A.1)

where α,x ∈ R
N , and σαx denotes the vector obtained by reflecting x across the plane

normal to the vector α.

A root system is defined as a finite set of vectors R which is invariant under

reflections along its own elements, called roots. That is, σαξ ∈ R for all α, ξ ∈ R.

We will assume that R is reduced, i.e. for any one of its elements ξ, bξ ∈ R implies

b = ±1. It is assumed that none of the roots is a zero vector.

For every root system, a base can be chosen such that all roots are a linear

combination of the base vectors with either all coefficients negative or all coefficients

positive. The elements of such a base are called simple roots, and they divide the root

system into the positive and negative subsystems, here denoted as R+ and R−. The
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choice of simple roots is not unique, but the positive and negative subsystems they define

always divide the root system into two disjoint parts of the same size (cardinality).

The multiplicity function k is a function of a root in R that returns a real value

and that is invariant under reflections along elements of R. That is,

k(α) = k(σα′α) ∀α,α′ ∈ R. (A.2)

The multiplicity function can be understood as a set of parameters (or multiplicities)

which are assigned to each subset of R formed by roots that are related by a reflection

(or composition of reflections) along some other root(s).

It is a well-known fact [36] that the multiplicity function reduces to a single

parameter for the AN−1 root system. For simplicity, we will denote this root system by

A. Let us prove this fact as follows. A is given by

A = {αij = (ei − ej)/
√
2 : i, j = 1, . . . , N ; i 6= j}. (A.3)

We will choose the positive subsystem

A+ = {αij = (ei − ej)/
√
2 : 1 ≤ j < i ≤ N}, (A.4)

where ei denotes the i-th unit base vector. This positive subsystem is generated by the

simple roots

αi+1,i = (ei+1 − ei)/
√
2, i = 1, . . . , N − 1. (A.5)

Hereafter, we will write σαij
= σij . We must note that the effect of σij on an

arbitrary vector x is that of exchanging its i-th and j-th components. To see this, we

will compute the l-th component of σijx:

(σijx)l = xl − (xi − xj)(δil − δjl). (A.6)

It is easy to see that xl remains unchanged for l 6= i, j, that (σijx)i = xj and that

(σijx)j = xi. Therefore, the group generated by the reflections along the elements of A

with composition as the group operation is the symmetric group SN .

In view of this property of A, we see that we can obtain any root from at most two

reflections of any other root, as shown below. Consider an arbitrary root αij and apply

to it the reflection σmj , with m arbitrary. This reflection exchanges the j-th and the

m-th components of αij, leaving us with αim. If we reflect once more using σil, with l

arbitrary, we obtain αlm as desired. Since k is invariant under any of these reflections,

one obtains

k(αij) = k(σmjσilαij) = k(αlm)

in general, and therefore it can be concluded that k is independent of its argument, so

it is a single parameter.
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Appendix B. Multivariate Special Functions

Let us summarize four common families of symmetric polynomials, keeping in mind

that we will consider polynomials of N variables. Apart from the monomial symmetric

functions and the Jack functions (introduced in Section 4.1), we introduce the

elementary symmetric and Schur functions.

For an integer 0 ≤ n ≤ N , the elementary symmetric function en(x) is given by

en(x) =
∑

1≤i1<···<in≤N

n
∏

j=1

xij . (B.1)

For example, e0(x) = 1, e1(x) =
∑N

i=1 xi, e2(x) =
∑

1≤i<j≤N xixj and eN (x) =
∏N

i=1 xi.

When the subscript of e is a partition, it is given by

eτ (x) =

l(τ)
∏

i=1

eτi(x). (B.2)

The Schur function sτ (x) is given by the Jacobi-Trudi formula [31, 32]

sτ (x) =
det1≤i,j≤N [x

τi+N−i
j ]

det1≤i,j≤N [x
N−i
j ]

. (B.3)

There is one Jack function for each partition τ , which is unique up to a

normalization constant. We will use the following two normalizations: the P

normalization, which is defined by the following linear combination of the monomial

symmetric functions mλ(x),

P(α)
τ (x) =

∑

λ:λ≤τ
|λ|=|τ |

uτλ(α)mλ(x), (B.4)

and the C normalization, which is defined so that
∞
∑

n=0

1

n!

∑

τ :l(τ)≤N
|τ |=n

C(α)
τ (x) = exp(x1 + x2 + . . .+ xN ) (B.5)

for all α. The partition-indexed matrix uτλ(α), as shown in [32], is an upper triangular

matrix whose diagonal entries are equal to one, and its non-diagonal entries are sums

of ratios of the form (aα + b)/(cα + d), where a, b, c and d are non-negative integers.

The Jack functions reduce to the monomial, elementary or Schur functions depending

on the the parameter α, and they are expressed in terms of mλ(x) in the form of (B.4)

as per Table B1 [32].

Using Jack functions, one can define the generalized hypergeometric function

0F (α)
0 (x,y) as follows [50, 4],

0F (α)
0 (x,y) =

∞
∑

n=0

1

n!

∑

τ :l(τ)≤N
|τ |=n

C(α)
τ (x)C(α)

τ (y)

C(α)
τ (1)

, (B.6)
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Table B1: The Jack function P(α)
τ (x) and its particular cases. Note that the partition

indexing eτ ′(x) is a conjugate partition. All matrices are upper triangular with diagonal

entries equal to one. The matrix Kτλ is called the Kostka matrix.

Parameter Function Matrix Function name

α P(α)
τ (x) uτλ(α) Jack

0 eτ ′(x) aτλ Elementary symmetric

1 sτ (x) Kτλ Schur

∞ mτ (x) δτλ Monomial symmetric

with 1 as given in (45). For the general definition of the generalized hypergeometric

function pF (α)
q , see [50]. It is desirable to express the above in terms of the P-normalized

Jack functions so that we can use the content of Table B1. For this purpose, we require

the generalized Pochhammer symbol (a)
(α)
τ , which is defined as the product

(a)(α)τ =

l(τ)
∏

i=1

Γ(a− (i− 1)/α+ τi)

Γ(a− (i− 1)/α)
, (B.7)

as well as the functions

cτ (α) =
∏

(i,j)∈τ

(α(τi − j) + τ ′j − i+ 1),

c′τ (α) =
∏

(i,j)∈τ

(α(τi − j + 1) + τ ′j − i). (B.8)

With these definitions, one can write [62]

C(α)
τ (x) =

α|τ ||τ |!
c′τ (α)

P(α)
τ (x), P(α)

τ (1) =
α|τ |(N/α)

(α)
τ

cτ (α)
. (B.9)

Insertion of the above in (B.6) yields, with α = 1/k,

0F (1/k)
0 (x,y) =

∞
∑

n=0

∑

τ :l(τ)≤N
|τ |=n

cτ (1/k)

c′τ (1/k)

P(1/k)
τ (x)P(1/k)

τ (y)

(kN)
(1/k)
τ

. (B.10)

Appendix C. Dunkl Operators, Dunkl Heat Equation and TPD

Dunkl operators are given by [33],

Tξf(x) = ∂ξf(x) +
∑

α∈R+

k(α)
f(x)− f(σαx)

α · x α · ξ. (C.1)

The first term is a derivative along the vector ξ. Each of the summands in the second

term is proportional to the odd part of f along the vector α.

Dunkl defined this operator in order to study multivariate orthogonal polynomials

and special functions related to reflection groups. Once a root system and multiplicity

function are chosen, the operator Tξ commutes with Tξ′ and therefore has many of the
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characteristics of partial derivatives. Hereafter we will use the notation Ti = Tei as in

Section 2.

In [42], Rösler found the TPD pk(t,y|x) that solves (11) as its Kolmogorov

backward equation, with Ti given by (C.1). The generalized heat equation (11), or

Dunkl heat equation, is given explicitly by [33]

∂

∂t
pk(t,y|x) =

1

2
∆(x)pk(t,y|x) +

∑

α∈R+

k(α)
∂αpk(t,y|x)

α · x

−
∑

α∈R+

k(α)
α2

2

pk(t,y|x)− pk(t,y|σαx)

(α · x)2 . (C.2)

The calculation of pk(t,y|x) can be accomplished using the Dunkl transform, which

requires both the Dunkl kernel defined in Section 3 and the weight function

wk(x) =
∏

α∈R

|α · x|k(α). (C.3)

For fixed R and k and functions f ∈ L1(RN , wk), the set of integrable functions with

respect to the weight function wk(x), the Dunkl transform is defined by the equation

[41]

f̂k(ξ) =
1

ck

∫

RN

f(x)Ek(−iξ,x)wk(x) d
Nx, (C.4)

and

ck =

∫

RN

e−ξ2/2wk(ξ) d
Nξ (C.5)

is a normalization constant obtained from a Selberg integral [3]. This transform has

many of the properties of the Fourier transform, and it can be used to solve equations

involving Dunkl operators in the same way the Fourier transform is used to solve

differential equations.

The generalized Dunkl translation τy is defined as

τyf(x) =
1

ck

∫

RN

f̂k(ξ)Ek(ix, ξ)Ek(iy, ξ)wk(ξ) d
Nξ, (C.6)

which reduces to a regular translation when k = 0. Because (C.6) does not change when

x and y are exchanged, we see that τyf(x) = τxf(y).

Using the Dunkl transform on (C.2), one obtains its Green function centred at the

origin. Using the translation (C.6) yields the complete Green function. Let us define

the sum of k(α) over the positive subsystem as

γ =
∑

α∈R+

k(α). (C.7)

Then, the Green function of (C.2) is given by

Γk(t,y|x) =
e−(x2+y2)/2t

cktN/2+γ
Ek

(

x√
t
,
y√
t

)

. (C.8)
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It is known that this Green function is normalized with respect to wk(x). That is,
∫

RN

Γk(t,y|x)wk(y) d
Ny = 1. (C.9)

Therefore, we recognize the TPD of the Dunkl process to be

pk(t,y|x) = wk(y)Γk(t,y|x) = wk(y)Vkp0(t,y|x)

= wk

(

y√
t

)

e−(x2+y2)/2t

cktN/2
Ek

(

x√
t
,
y√
t

)

. (C.10)

The details of the calculation leading to this TPD can be found in [42]. The factor

wk

(

y/
√
t
)

can be interpreted as follows: in (C.2), the denominators in the second and

third terms on the RHS denote a repulsion from the planes defined by α ·x = 0, α ∈ R,

and therefore, the probability of any process finishing at any point such that α · y = 0

should be zero. Indeed, wk(y) =
∏

α∈R |α · y|k(α) cancels whenever α · y = 0 for any

α ∈ R, which reflects this fact.

For the purposes of this work, we are interested in pk(t,y|x) for the root system of

type A. In this case, the Dunkl operator in the direction ξ is given by

Tξf(x) = ∂ξf(x) + k
∑

1≤i<j≤N

f(x)− f(σijx)

xj − xi
(ξj − ξi), (C.11)

from which (1) follows. Let us calculate the quantities that form pk in this particular

case. First, the weight function wk becomes proportional to the Vandermonde

determinant hN(x),

wk(x) =
∏

1≤j<l≤N

∣

∣

∣

∣

1√
2
(el − ej) · x

∣

∣

∣

∣

2k

=
|hN(x)|2k
2kN(N−1)/2

. (C.12)

The normalization constant ck is then

ck =
1

2kN(N−1)/2

∫

RN

e−x2/2|hN(x)|2k dNx =
(2π)N/2

2kN(N−1)/2

N
∏

j=1

Γ(1 + jk)

Γ(1 + k)
, (C.13)

where we have used a particular case of the Selberg integral (equation (17.6.7) in [3]).

Inserting the above in (C.10) yields (23).

Appendix D. Extema and Maximum value of FN (v, t)

Here, we prove two lemmas necessary to complete the proof of Theorem 4. The first

concerns the location of the extrema of FN (v, t).

Lemma 5. The extrema of the function

FN(v, t) =
N

2
(N − 1)(1− log t)−

N
∑

j=1

j log j + 2 log |hN (v)| −
v2

2t
(D.1)

are located at v =
√
2tzN or any of its permutations, where zN is the vector of roots

of the Hermite polynomial HN(x), given by (51) and (50) respectively. Furthermore, all

extrema are local maxima.
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Proof. We first calculate the first-order partial derivatives of FN (v, t) relative to v and

equate them to zero.

∂

∂vi
FN(v, t) =

N
∑

j:j 6=i
j=1

2

vi − vj
− vi

t
= 0 (D.2)

Hence, the extrema of FN(v, t) must obey the relation

vi =

N
∑

j:j 6=i
j=1

2t

vi − vj
. (D.3)

The second order derivatives of FN(v, t) are

∂2

∂vj∂vi

[

2 log |hN(v)| −
v2

2t

]

=
∂

∂vj

[

∑

l:l 6=i

2

vi − vl
− vi

t

]

=

{

−∑l:l 6=i
2

(vi−vl)2
− 1

t
if i = j,

2
(vi−vj)2

if i 6= j.
(D.4)

The matrix formed by the N ×N second order derivatives above is negative definite for

all vectors v with non-repeating components. To show this, we consider an arbitrary

real vector u and calculate the quadratic form associated to (D.4).

∑

1≤i,j≤N

ui
∂2FN(v, t)

∂vj∂vi
uj = −1

t

N
∑

i=1

u2
i − 2

∑

1≤i<j≤N

(ui − uj)
2

(vi − vj)2
≤ 0 (D.5)

Here, the equality holds only when all the ui are equal to zero. Hence, all extrema given

by (D.3) are maxima.

Let us focus on the location of the extrema. Applying the scaling v =
√
2tz to

(D.3) we obtain

zi =

N
∑

j:j 6=i
j=1

1

zi − zj
, (D.6)

for all i = 1 . . . , N . Therefore, it suffices to solve the above equation for z to find the

location of the extrema of FN (v, t). Note that, given z, any of its permutations solve

(D.6):

zρ(i) =

N
∑

j:j 6=i
j=1

1

zρ(i) − zρ(j)
(D.7)

for any ρ ∈ SN . Now we prove that (D.6) implies that {zi}i=1,...,N must be the roots of

the N -th Hermite polynomial. Let us multiply (D.6) by
∏N

l:l 6=i
l=1

(zi − zj).

zi

N
∏

l:l 6=i
l=1

(zi − zl) =
N
∑

j:j 6=i
j=1

N
∏

l:l 6=i,j
l=1

(zi − zl) (D.8)



Interacting Particles on the Line and Dunkl Intertwining Operator of Type A 26

Now, we consider a polynomial whose roots are {zi}i=1,...,N :

p(x) = c
N
∏

n=1

(x− zn), (D.9)

with c a non-zero constant. The first two derivatives of this polynomial are:

p′(x) =
d

dx
p(x) = c

N
∑

j=1

N
∏

n:n 6=j
n=1

(x− zn) (D.10)

and

p′′(x) =
d2

dx2
p(x) = 2c

∑

1≤j<l≤N

N
∏

n:n 6=j,l
n=1

(x− zn). (D.11)

At any of the values zi, p
′′(x) behaves as follows.

p′′(zi) = 2c

N
∑

j:j 6=i
j=1

N
∏

n:n 6=i,j
n=1

(zi − zn) (D.12)

We insert (D.8) to obtain

p′′(zi) = 2czi

N
∏

n:n 6=i
n=1

(zi − zn) = 2zip
′(zi). (D.13)

It is known [54] that the differential relation on the zeros of the polynomial p(x) is only

fulfilled by the N -th Hermite polynomial. Indeed, it solves the differential equation

H ′′
N(x)− 2xH ′

N(x) + 2NHN(x) = 0, (D.14)

which reduces to (D.13) when x = zi,N , with i = 1, . . . , N and zi,N is the i-th root of

HN(x). Hence, p(x) ∝ HN(x), and zi = zi,N .

In the second lemma, we find the maximum value of FN (v, t).

Lemma 6. The maximum value of FN(v, t) is zero.

Proof. By Lemma 5, the maximum value of FN (v, t) is located at v =
√
2tzN . This

yields

FN(
√
2tzN , t) =

N

2
(N − 1)− z2N + 2 log |hN(zN)|+

N

2
(N − 1) log 2−

N
∑

j=2

j log j, (D.15)

which is independent of t. Let us focus first on the term

z2N =

N
∑

j=1

z2j,N . (D.16)

The derivative property of the Hermite polynomials [53] allows us to write

H ′
N(x) = 2NHN−1(x), (D.17)
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and using the product representation from Lemma 5 we obtain

N
∑

i=1

N
∏

j:j=1
j 6=i

(x− zj,N) = N

N−1
∏

j=1

(x− zj,N−1). (D.18)

Since the above equation holds for all x, we can expand in powers of x and equate the

coefficients of the same order. In particular, the coefficients of xN−3 form the equation

(N − 2)
∑

1≤i<j≤N

zi,Nzj,N = N
∑

1≤i<j≤N−1

zi,N−1zj,N−1, (D.19)

and if we denote the double sum on the LHS by sN , we obtain

sN =
N

N − 2
sN−1. (D.20)

Using mathematical induction on this relation we find that

sN = −N(N − 1)

4
. (D.21)

Now, since the Hermite polynomials have either odd or even symmetry, the sum of their

roots equals zero. Therefore,

z2N =

(

N
∑

i=1

zi,N

)2

− 2sN =
N(N − 1)

2
. (D.22)

Now, let us calculate

2 log |hN(zN)|. (D.23)

The main quantity we wish to find is the square of the Vandermonde determinant of

the roots of the N -th Hermite polynomial. This quantity is known as the discriminant

of the Hermite polynomials, and we calculate it here following Szegö [54]. Using

H ′
N(zi,N) = lim

x→zi,N

HN(x)

x− zi,N
= 2N

N
∏

j:j 6=i
j=1

(zi,N − zj,N), (D.24)

we can write

(hN(zN ))
2 =

∏

1≤i<j≤N

(zj,N − zi,N )
2 = (−1)N(N−1)/2

∏

1≤i 6=j≤N

(zj,N − zi,N)

=
(−1)N(N−1)/2

2N2

N
∏

i=1

H ′
N(zi,N)

=
(−1)N(N−1)/2NN

2N(N−1)

N
∏

i=1

HN−1(zi,N). (D.25)
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The last equality follows from (D.17). Let us focus on the last product:

N
∏

i=1

HN−1(zi,N) = 2N(N−1)
N
∏

i=1

N−1
∏

j=1

(zi,N − zj,N−1)

= 2N(N−1)

N−1
∏

j=1

N
∏

i=1

(zj,N−1 − zi,N) =

N−1
∏

j=1

HN(zj,N−1). (D.26)

From the recurrence relation

HN(x) = 2xHN−1(x)− 2(N − 1)HN−2(x) (D.27)

we obtain that HN (zj,N−1) = −2(N − 1)HN−2(zj,N−1), so the product above becomes

N
∏

i=1

HN−1(zi,N) = [−2(N − 1)]N−1
N−1
∏

j=1

HN−2(zj,N−1). (D.28)

Mathematical induction on the above yields

N
∏

i=1

HN−1(zi,N) = (−2)N(N−1)/2
N−1
∏

j=1

jj. (D.29)

Therefore,

(hN(zN ))
2 =

(−1)N(N−1)/2NN

2N(N−1)

N
∏

i=1

HN−1(zi,N) =
1

2N(N−1)/2

N
∏

j=1

jj . (D.30)

The logarithm of the above is

2 log |hN(zN)| =
N
∑

j=1

j log j − N

2
(N − 1) log 2, (D.31)

and thus the maximum value of FN(v, t) is zero for all its extrema, due to the fact that

(D.16) and (D.23) do not change when the roots zN are permuted.
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