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VISCOUS AERODYNAMIC SHAPE OPTIMIZATION OF WINGS

INCLUDING PLANFORM VARIABLES

Kasidit Leoviriyakit, ∗ Sangho Kim, † and Antony Jameson ‡

Stanford University, Stanford, CA 94305-4035

During the last decade, aerodynamic shape optimization methods based on control

theory have been intensively developed. The methods have proved to be very effective

for improving wing section shapes for fixed wing-planforms. Building on this success,

extension of the control theory approach to variable planforms has yielded further im-

provement. This paper describes the formulation of planform optimization techniques

based on control theory for aerodynamic shape design in viscous compressible flow mod-

eled by the Navier-Stokes equations. It extends the previous work on wing planform

optimization based on inviscid calculations, providing increased realism, and alleviating

shocks that would otherwise form in the viscous solution over the final inviscid design.

In order to realize a meaningful design, the structural weight, estimated by a statistical

weight model, is taken into account. A practical method to combine the structural weight

into the design cost function is studied. An extension of a single to a multiple objective

cost function is also considered. Results of optimizing a wing-fuselage of a commercial

transport aircraft show a successful trade-off between the aerodynamic and structural

cost functions, leading to improved wing planform designs. The results also support the

necessity of including the structural weight in the cost function. Furthermore, by varying

the weighting constant in the cost function, a Pareto front is captured, broadening the

design range of optimal shapes.

INTRODUCTION

CFD has played a key role in the aerodynamic de-
sign process. However, it has generally not been

used as a direct design tool, but as an aid to analyze
the fluid flow. The design process has still been done
by trial and error based on the intuition and experi-
ence of the designer. In the 1970s several efforts were
made to exploit CFD as a direct design tool,1–4 and
since then the focus of CFD applications has shifted
to aerodynamic design.5–11 This shift has been mainly
motivated by the availability of high performance com-
puting platforms and by the development of new and
efficient analysis and design algorithms. In particular,
automatic design procedures which use CFD combined
with gradient-based optimization techniques have had
a significant impact by removing difficulties in the de-
cision making process faced by the aerodynamicist.

In gradient-based optimization techniques, a con-
trol function to be optimized (an airfoil shape, for
example) is parameterized with a set of design vari-
ables, and a suitable cost function to be minimized
or maximized is defined (drag coefficient, lift/drag ra-
tio, difference from a specified pressure distribution,
etc). Then, a constraint, the governing equations in
the present study, can be introduced in order to ex-
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press the dependence between the cost function and
the control function. The sensitivity derivatives of the
cost function with respect to the design variables are
calculated in order to get a direction of improvement.
Finally, a step is taken in this direction, and the pro-
cedure is repeated until convergence to a minimum or
maximum is achieved.

In high-dimensional parameterization optimizations
such as aerodynamic shape optimization, gradient cal-
culation can be the most time consuming portion of
the design process. Therefore, it is essential to find a
fast and accurate methods to calculate the gradient.

Gradient information can be computed using a vari-
ety of approaches such as the finite-difference method,
the complex step method,12 and automatic differentia-
tion.13 Unfortunately, their computational cost is still
proportional to the number of design variables in the
problem. An alternative choice is to treat the design
problem as a control problem. This approach has dra-
matic computational cost advantages when compared
to any of the other methods. The foundations of con-
trol theory for systems governed by partial differential
equations were laid by J.L. Lions.14

The control-theory approach is often called the ad-
joint method, since the necessary gradients are ob-
tained via the solution of the adjoint equations of the
governing equations of interest. The adjoint method is
extremely efficient since the computational expense in-
curred in the calculation of the complete gradient is ef-
fectively independent of the number of design variables.
The only cost involved is the calculation of one flow
solution and one adjoint solution whose complexity is
similar to that of the flow solution. Control theory was
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applied in this way to shape design for elliptic equa-
tions by Pironneau15 and it was first used in transonic
flow by Jameson.6, 7, 16 Since then this method has be-
come a popular choice for design problems involving
fluid flow.9, 17–19 During the last decade, the methods
have been intensively developed and have been proved
to be very effective for improving wing section shapes
for fixed wing-planforms.20, 21

Wing planform modifications have the potential to
yield significantly larger improvements in wing perfor-
mance, but can also adversely affect both wing weight
and stability and control characteristics. It is well
known that the induced drag varies inversely with the
square of the span. Hence the induced drag can be re-
duced by increasing the span. Moreover, shock drag in
transonic flow might be reduced by increasing sweep-
back or increasing the chord to reduce the thickness
to chord ratio. Consequently, a pure aerodynamic op-
timization may lead to highly suspect results because
the decrease in drag might come at the expense of the
increase in wing weight. Therefore it is essential to ac-
count for the effect of planform change on wing weight,
and for practical design purposes, a fast and accurate
method to predict the wing weight and its gradient is
necessary.

In this work, we report improvements in a design for
wing planform optimization22 and its extension to in-
clude viscous effects. While inviscid calculations have
proven useful for the design of transonic wings at the
cruise condition, the required changes in the section
shape are comparable in magnitude to the displace-
ment thickness of the boundary layer. Thus viscous de-
sign provides increased realism, and alleviates shocks
that would otherwise form in the viscous solution over
the final inviscid design. Accurate resolution of vis-
cous effects such as separation and shock/boundary
layer interaction is also essential for optimal design
encompassing off-design conditions.

MATHEMATICAL FORMULATION

Design using the Navier-Stokes Equations

The application of control theory to aerodynamic
design problems is illustrated in this section for the
case of three-dimensional wing design using the com-
pressible Navier-Stokes equations as the mathematical
model. It proves convenient to denote the Cartesian
coordinates and velocity components by x1, x2, x3 and
u1, u2, u3, and to use the convention that summation
over i = 1 to 3 is implied by a repeated index i. Then,
the three-dimensional Navier-Stokes equations may be
written as

∂w

∂t
+
∂fi

∂xi

=
∂fvi

∂xi

in D, (1)

where the state vector w, inviscid flux vector f and
viscous flux vector fv are described respectively by
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and δij is the Kronecker delta function. Also,

p = (γ − 1) ρ

{

E −
1

2
uiui

}

, (3)

and
ρH = ρE + p (4)

where γ is the ratio of the specific heats. The viscous
stresses may be written as

σij = µ

(

∂ui

∂xj

+
∂uj

∂xi

)

+ λδij
∂uk

∂xk

, (5)

where µ and λ are the first and second coefficients of
viscosity. The coefficient of thermal conductivity and
the temperature are computed as

k =
cpµ

Pr
, T =

p

Rρ
, (6)

where Pr is the Prandtl number, cp is the specific heat
at constant pressure, and R is the gas constant.

Using a transformation to a fixed computational do-
main, the Navier-Stokes equations can be written in
the transformed coordinates as

∂ (Jw)

∂t
+
∂ (Fi − Fvi)

∂ξi
= 0 in D, (7)

where the inviscid terms have the form

∂Fi

∂ξi
=

∂

∂ξi
(Sijfj) ,

the viscous terms have the form

∂Fvi

∂ξi
=

∂

∂ξi

(

Sijfvj

)

,

and Sij are the coefficients of the Jacobian matrix of
the transformation.

The geometry changes are represented by changes
δSij in the metric coefficients. Suppose one wishes to
minimize the cost function of a boundary integral

I =

∫

B

M(w, S) dBξ +

∫

B

N (S) dBξ
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where M(w, S) could be an aerodynamic cost func-
tion, e.g. drag coefficient, and N (S) could be a struc-
tural cost function, e.g. wing weight. In the steady
state flow , one can augment the cost function through
Lagrange multiplier ψ as

I =

∫

B

M(w, S) dBξ+

∫

D

ψTR(w, S) dDξ+

∫

B

N (S) dBξ,

where R = ∂(Fi−Fvi)
∂ξi

. A shape variation δS causes a
variation

δI =

∫

B

δM dBξ+

∫

D

ψT ∂

∂ξi
δ(Fi−Fvi) dDξ+

∫

B

δN dBξ

The second term on the RHS can be integrated by
parts to give

∫

B

niψ
T δ(Fi−Fvi)dBξ −

∫

D

∂ψT

∂ξi
δ(Fi−Fvi) dDξ . (8)

and choosing ψ to satisfy the adjoint equation with ap-
propriate boundary conditions depending on the cost
function, the explicit dependence on δw is eliminated
allowing the cost variations to be expressed in terms of
δS and the adjoint solution, and hence finally in terms
of the change δF in a function F(ξ) defining the shape.

Thus one obtains

δI =

∫

GδF dξ = 〈G, δF〉

where G is the infinite dimensional gradient (Frechet
derivative) at the cost of one flow and one adjoint so-
lution. Then one can make an improvement by setting

δF = −λG

In fact the gradient G is generally of a lower smooth-
ness class than the shape F . Hence it is important to
restore the smoothness. This may be affected by pass-
ing to a Sobolev inner product of the form

〈u, v〉 =

∫

(uv + ε
∂u

∂ξ

∂v

∂ξ
) dξ

This is equivalent to replacing G by Ḡ, where in one
dimension

Ḡ −
∂

∂ξ
ε
∂G

∂ξ
= G, Ḡ = zero at end points

and making a shape change δF = −λḠ.

Euler Adjoint Equations and Boundary

Condition

In order to derive the adjoint equation in detail, (8)
can be expanded as

∫

B

ψT (δS2jfj + S2jδfj) dBξ

−

∫

D

∂ψT

∂ξi
(δSijfj + Sijδfj) dDξ

−

∫

B

ψT
(

δS2jfvj + S2jδfvj

)

dBξ

+

∫

D

∂ψT

∂ξi

(

δSijfvj + Sijδfvj

)

dDξ. (9)

It is convenient to assume that the shape modifica-
tion is restricted to the coordinate surface ξ2 = 0 so
that n1 = n3 = 0, and n2 = 1. Furthermore, it is as-
sumed that the boundary contributions at the far field
may either be neglected or else eliminated by a proper
choice of boundary conditions as previously shown for
the inviscid case.23, 24

In equation (9) the inviscid flux variation can be
expanded by setting

Sijδfj = Sij

∂fj

∂w
δw.

Taking the transpose of equation (9), it can be seen
that in order to eliminate the explicit dependence on
δw in the absence of viscous effect, ψ should be chosen
to satisfy the inviscid adjoint equation

CT
i

∂ψ

∂ξi
= 0 in D, (10)

where the inviscid Jacobian matrices in the trans-
formed space are given by

Ci = Sij

∂fj

∂w
.

In order to design a shape which will lead to a de-
sired pressure distribution, natural choice is to set

I =
1

2

∫

B

(p− pd)
2
dS

where pd is the desired surface pressure, and the inte-
gral is evaluated over the actual surface area. In the
computational domain this is transformed to

I =
1

2

∫ ∫

Bw

(p− pd)
2 |S2| dξ1dξ3,

where the quantity

|S2| =
√

S2jS2j

denotes the face area corresponding to a unit element
of face area in the computational domain. Now, to
cancel the dependence of the boundary integral on δp,
the adjoint boundary condition reduces to

ψjnj = p− pd (11)

where nj are the components of the surface normal

nj =
S2j

|S2|
.

This amounts to a transpiration boundary condition
on the co-state variables corresponding to the momen-
tum components. Note that it imposes no restriction
on the tangential component of ψ at the boundary.
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Viscous Adjoint Equations

The viscous terms are derived below under the as-
sumption that the viscosity and heat conduction co-
efficients µ and k are essentially independent of the
flow, and that their variations may be neglected. This
simplification has been successfully used for may aero-
dynamic problems of interest. However, if the flow
variations could result in significant changes in the tur-
bulent viscosity, it may be necessary to account for its
variation in the calculation.

Transformation to Primitive Variables

The derivation of the viscous adjoint terms can be
simplified by transforming to the primitive variables

w̃T = (ρ, u1, u2, u3, p),

because the viscous stresses depend on the velocity
derivatives ∂ui

∂xj
, while the heat flux can be expressed

as

κ
∂

∂xi

(

p

ρ

)

.

where κ = k
R

= γµ
Pr(γ−1) . The relationship between

the conservative and primitive variations is defined by
the expressions

δw = Mδw̃, δw̃ = M−1δw

which make use of the transformation matrices
M = ∂w

∂w̃
and M−1 = ∂w̃

∂w
. These matrices are provided

in transposed form for future convenience
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uiui
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.

The conservative and primitive adjoint operators L
and L̃ corresponding to the variations δw and δw̃ are
then related by

∫

D

δwTLψ dDξ =

∫

D

δw̃T L̃ψ dDξ,

with
L̃ = MTL,

so that after determining the primitive adjoint op-
erator by direct evaluation of the viscous portion of
(9), the conservative operator may be obtained by

the transformation L = M−1T
L̃. Since the continu-

ity equation contains no viscous terms, it makes no

contribution to the viscous adjoint system. Therefore,
the derivation proceeds by first examining the adjoint
operators arising from the momentum equations and
then the energy equation. The details may be found
in.25

The Viscous Adjoint Field Operator

In order to make use of the summation convention,
it is convenient to set ψj+1 = φj for j = 1, 2, 3 and
ψ5 = θ. Collecting together the contributions from the
momentum and energy equations, the viscous adjoint
operator in primitive variables can be finally expressed
as

(L̃ψ)1 = − p
ρ2

∂
∂ξl

(

Sljκ
∂θ
∂xj

)

(L̃ψ)i+1 = ∂
∂ξl

{

Slj

[

µ
(

∂φi

∂xj
+

∂φj

∂xi

)

+ λδij
∂φk

∂xk

]}

+ ∂
∂ξl

{

Slj

[

µ
(

ui
∂θ
∂xj

+ uj
∂θ
∂xi

)

λδijuk
∂θ

∂xk

]}

− σijSlj
∂θ
∂ξl

for i = 1, 2, 3

(L̃ψ)5 = 1
ρ

∂
∂ξl

(

Sljκ
∂θ
∂xj

)

.

The conservative viscous adjoint operator may now be
obtained by the transformation

L = M−1T
L̃.

Boundary Conditions for Force Optimization

The boundary term that arises from the momentum
equations including both the δw and δS components
(9) takes the form

∫

B

φkδ (S2j (δkjp+ σkj)) dBξ.

Replacing the metric term with the corresponding lo-
cal face area S2 and unit normal nj defined by

|S2| =
√

S2jS2j , nj =
S2j

|S2|

then leads to
∫

B

φkδ (|S2|nj (δkjp+ σkj)) dBξ.

Defining the components of the total surface stress as

τk = nj (δkjp+ σkj)

and the physical surface element

dS = |S2| dBξ,

the integral may then be split into two components

∫

B

φkτk |δS2| dBξ +

∫

B

φkδτkdS, (12)

where only the second term contains variations in the
flow variables and must consequently cancel the δw
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terms arising in the cost function. The first term will
appear in the expression for the gradient.

A general expression for the cost function that al-
lows cancellation with terms containing δτk has the
form

I =

∫

B

N (τ)dS, (13)

corresponding to a variation

δI =

∫

B

∂N

∂τk
δτkdS,

for which cancellation is achieved by the adjoint
boundary condition

φk =
∂N

∂τk
.

Natural choices for N arise from force optimization
and as measures of the deviation of the surface stresses
from desired target values.

The force in a direction with cosines qi has the form

Cq =

∫

B

qiτidS.

If we take this as the cost function (13), this quantity
gives

N = qiτi.

Cancellation with the flow variation terms in equation
(12) therefore mandates the adjoint boundary condi-
tion

φk = qk.

Note that this choice of boundary condition also elim-
inates the first term in equation (12) so that it need
not be included in the gradient calculation.

Inverse Design

In the inverse design case, where the cost function
is intended to measure the deviation of the surface
stresses from some desired target values, a suitable
definition is

N (τ) =
1

2
alk (τl − τdl) (τk − τdk) ,

where τd is the desired surface stress, including the
contribution of the pressure, and the coefficients alk

define a weighting matrix. For cancellation

φkδτk = alk (τl − τdl) δτk.

This is satisfied by the boundary condition

φk = alk (τl − τdl) . (14)

Assuming arbitrary variations in δτk, this condition is
also necessary.

In order to control the surface pressure and normal
stress one can measure the difference

nj {σkj + δkj (p− pd)} ,

where pd is the desired pressure. The normal compo-
nent is then

τn = nknjσkj + p− pd,

so that the measure becomes

N (τ) =
1

2
τ2
n

=
1

2
nlnmnknj {σlm + δlm (p− pd)}

∗ {σkj + δkj (p− pd)} .

This corresponds to setting

alk = nlnk

in equation (14). Defining the viscous normal stress as

τvn = nknjσkj ,

the measure can be expanded as

N (τ) =
1

2
nlnmnknjσlmσkj

+
1

2
(nknjσkj + nlnmσlm) (p− pd)

+
1

2
(p− pd)

2

=
1

2
τ2
vn + τvn (p− pd) +

1

2
(p− pd)

2
.

For cancellation of the boundary terms

φk (njδσkj + nkδp) =
{

nlnmσlm + n2
l (p− pd)

}

nk

∗ (njδσkj + nkδp)

leading to the boundary condition

φk = nk (τvn + p− pd) .

In the case of high Reynolds number, this is well ap-
proximated by the equations

φk = nk (p− pd) , (15)

which should be compared with the single scalar equa-
tion derived for the inviscid boundary condition (11).
In the case of an inviscid flow, choosing

N (τ) =
1

2
(p− pd)

2

requires

φknkδp = (p− pd)n
2
kδp = (p− pd) δp

which is satisfied by equation (15), but which repre-
sents an over-specification of the boundary condition
since only the single condition (11) needs be specified
to ensure cancellation.
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Boundary Conditions Arising from the Energy

Equation

The form of the boundary terms arising from the
energy equation depends on the choice of temperature
boundary condition at the wall. For the adiabatic case,
the boundary contribution is

∫

B

kδT
∂θ

∂n
dBξ,

while for the constant temperature case the boundary
term is

∫

B

kθ

{

S2j
2

J

∂

∂ξ2
δT + δ

(

S2j
2

J

)

∂T

∂ξ2

}

dBξ .

one possibility is to introduce a contribution into the
cost function which depends on T or ∂T

∂n
so that the

appropriate cancellation would occur. Since there is
little physical intuition to guide the choice of such a
cost function for aerodynamic design, a more natural
solution is to set

θ = 0

in the constant temperature case or

∂θ

∂n
= 0

in the adiabatic case. Note that in the constant tem-
perature case, this choice of θ on the boundary would
also eliminate the boundary metric variation terms in

∫

B

θδ (S2jQj) dBξ .

IMPLEMENTATION

Cost Function for Planform Design

In order to design a high performance transonic
wing, which will lead to a desired pressure distribu-
tion, and to still maintain a realistic shape, the natural
choice is to set

I = α1CD + α2
1

2

∫

B

(p− pd)
2dS + α3CW (16)

with

CW =
Wwing

q∞Sref

(17)

where
CD = drag coefficient,
CW = dimensionless wing structural weight,
p = current surface pressure,
pd = desired pressure,
q∞ = dynamic pressure,
Sref = reference area,
Wwing = wing structure weight, and
α1, α2, α3 = weighting parameter for drag,

inverse design, and structural
weight respectively.

The constant α2 is introduced to provide the designer
some control over the pressure distribution.

A practical way to estimate Wwing is to use the
so-called Statistical Group Weights Method, which
applies statistical equations based on sophisticated re-
gression analysis. For a cargo/transport wing weight,
one can use26

Wweight = 0.0051(WdgNz)
0.557S0.649

w A0.5

(t/c)−0.4
root (1 + λ)0.1cos(Λ)−1.0S0.1

csw (18)

where
A = aspect ratio,
Nz = ultimate load factor

= 1.5 x limit load factor,
Scsw = control surface area (wing-mounted),
Sw = trapezoidal wing area,
t/c = thickness to chord ratio,
Wdg = flight design gross weight,
Λ = wing sweep, and
λ = taper ratio at 25 % MAC.

In addition, if the wing of interest is modeled by five
planform variables such as root chord (c1), mid-span
chord (c2), tip chord (c3), span (b), and sweepback(Λ),
as shown in Fig. 1, the sensitivity of the weight to an
individual planform variable can be shown in Fig. 2, in-
dicating that the weight increases, as sweepback, span,
or chord-length increases.

b/2

C3

C1

C2

Fig. 1 Modeled wing governed by five planform
variables; root chord (c1), mid-span chord (c2), tip
chord (c3), span (b), and sweepback(Λ).

The increases of sweepback, span, and chord-length
affect drag oppositely. As sweepback is increased, the
shock drag is weaken. Vortex drag can be reduced by
increasing the span.

In these ways the inclusion of a weight estimate in
the cost function should prevent the optimization from
leading to an unrealistic wing planform, and yield a
good overall performance.

6 of 14

American Institute of Aeronautics and Astronautics Paper 2003–3498



0 50 100 150 200 250
75,000

80,000

85,000

90,000

95,000

100,000
 Effect of the planform variables on the Statistical Group Weight Model

Sweep angle (deg), Span length (ft), and Chord length (ft)

W
in

g
 w

ei
g

h
t 

(l
b

)
Sweepback
Span
Root chord
Mid−span chord
Tip chord

Fig. 2 Effect of sweepback(Λ), span (b), root
chord(c1), mid-span chord(c2), and tip chord(c3) on
the Statistical Group Weights Method

Aerodynamic Gradient Calculation for

Planform Variables

Gradient information can be computed using a vari-
ety of approaches such as the finite-difference method,
the complex step method,12 and the automatic differ-
entiation.13 Unfortunately, their computational cost
is still proportional to the number of design variables
in the problem. In an optimum transonic wing design,
suppose one chooses mesh points on a wing surface as
the design variables, which is on the order of 1000 or
more; it is impractical to calculate the gradient us-
ing the methods mentioned earlier. In our planform
optimization, the design variables are points on the
wing surface plus the planform variables. To evaluate
the aerodynamic gradient with respect to the plan-
form variables, since the number of planform variables
(five in this study) is far less than that of the surface
optimization, one could calculate the gradient by the
finite-difference method, the complex step method or
the automatic differentiation. However, the cost for
the gradient calculation will be five times higher. A
more efficient approach is to follow the adjoint formu-
lation.

Consider the aerodynamic contribution of the cost
function (16)

δI =

∫

B

δM dBξ +

∫

D

ψT δR dDξ

This can be split as

δI = [Iw]I δw + δIII

with

δM = [Mw]Iδw + δMII

where the subscripts I and II are used to distinguish
between the contributions associated with variation of

the flow solution δw and those associated with the met-
ric variations δS. Thus [Mw]I represents ∂M

∂w
with the

metrics fixed. Note that δR is intentionally kept un-
split for programming purposes. If one chooses ψ as
ψ∗ that satisfy the adjoint equations, then

δI(w, S) = δI(S)

=

∫

B

δMII dBξ +

∫

D

ψ∗T

δR dDξ

≈
∑

B

δMII∆B +
∑

D

ψ∗T

∆R̄

≈
∑

B

δMII∆B +
∑

D

ψ∗T (

R̄|S+δS − R̄|S
)

,

where R̄|S and R̄|S+δS are volume weighted residuals
calculated at the original mesh and at the mesh per-
turbed in the design direction.

Provided that ψ∗ has already been calculated and R̄
can be easily calculated, the gradient of the planform
variables can be computed effectively by first perturb-
ing all the mesh points along the direction of interest.
For example, to calculate the gradient with respect to
the sweepback, move all the points on the wing surface
as if the wing were pushed backward and also move all
other associated points in the computational domain
to match the new location of points on the wing. Then
re-calculate the residual value and subtract the previ-
ous residual value from the new value to form ∆R̄.
Finally, to calculate the planform gradient, multiply
∆R̄ by the costate vector and add the contribution
from the boundary terms.

This way of calculating the planform gradient ex-
ploits the full benefit of knowing the value of adjoint
variables ψ∗ with no extra cost of flow or adjoint cal-
culations.

Choice of Weighting Constants

Performance Consideration

The choice of α1 and α3 greatly affects the opti-
mum shape. An intuitive choice of α1 and α3 can be
made by considering the problem of maximizing range
of an aircraft. The simplified range equation can be
expressed as

R =
V

C

L

D
log

W1

W2

where
C = Specific Fuel Consumption,
D = Drag,
L = Lift,
R = Range,
V = Aircraft velocity,
W1 = Take off weight, and
W2 = Landing weight.

If one takes

W1 = We +Wf = fixed

W2 = We
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where
We = Gross weight of the airplane without fuel,
Wf = Fuel weight,

then the variation of the weight can be expressed as

δW2 = δWe ≈ δWwing .

With fixed V
C

, W1, and L, the variation of R can be
stated as

δR =
V

C

(

δ

(

L

D

)

log
W1

W2
+
L

D
δ

(

log
W1

W2

))

=
V

C

(

−
δD

D

L

D
log

W1

W2
−
L

D

δW2

W2

)

= −
V

C

L

D
log

W1

W2

(

δD

D
+

1

logW1

W2

δW2

W2

)

and

δR

R
= −

(

δCD

CD

+
1

logW1

W2

δW2

W2

)

= −

(

δCD

CD

+
1

logW1

W2

δCW

W2

q∞Sref

)

.

If we minimize the cost function defined as

I = CD + αCW ,

where α is the weighting multiplication, then choosing

α =
CD

W2

q∞Sref

logW1

W2

, (19)

corresponds to maximizing the range of the aircraft.

Application of Game Theory

To extend the optimal design range, α3

α1

should not
be limited to only one value. Using different values of
α3

α1

, different optimal shapes can be created. If the op-
timal shapes are truly optimized, each of them should
lie on a curve where no improvement can be achieved
in drag that doesn’t lead to a degration of weight, and
the similar. This idea is similar to a ”game” where one
player tries to minimize CD and the other player tries
to minimize CW .

We use an array of different (α1, α3) to compute
different optimum shapes. Then, we eliminate any
dominated shape to form an optimal set, the ”Pareto
front”. For example, suppose Fig. 3 represents a result
of optimum shapes corresponding to an array of differ-
ent (α1, α3). Let the symbol X represent one optimum
shape. In this example, the point Q is dominated by
the point P (same drag, less weight) and also by the
point R (less drag, same weight). So the point Q will
be eliminated. The Pareto front can be fit through the
points P, R, and other dominating points and elim-
inating all the other dominated points illustrated in
the figure. With the Pareto front representation, the
designer will have freedom to pick the most useful op-
timal design.

α 3 Pareto front
vs.

R Q

Drag

Weight

P
1α

Fig. 3 Cooperative game strategy with Drag and
Weight as players

DESIGN CYCLE AND PARALLEL

COMPUTATION

In general, the computational cost of viscous design
is at least one order of magnitude greater that the
cost of inviscid design. Three main reasons for this
are the increase of the number of grid points by a
factor of two or more to resolve the boundary layer,
the additional cost of computing the viscous terms
and turbulent model, and a slower convergence due
to highly stretched cells inside the boundary layers.

To make the design method feasible in practice, par-
allel computing is implemented to parts of the design
cycle that dominate the computation time. Both flow
and adjoint calculation have been implemented in a
parallel setting using the message passing interface
(MPI).

The design cycle starts by first solving the flow field
until about a 3 order of magnitude drop in the resid-
ual. The flow solution is then passed to the adjoint
solver. Second, the adjoint solver is run to calculate
the costate vector. Iteration continues until at least
a 2 order of magnitude drop in the residual.1 The
costate vector is passed to the gradient module to eval-
uate the aerodynamic gradient. Then, the structural
gradient is calculated and added to the aerodynamic
gradient to form the overall gradient. The steepest
descent method is used with a small step size to guar-
antee that the solution will converge to the optimum
point. The design cycle is shown in Fig. 4.

FLOW SOLVER AND ADJOINT SOLVER

The flow solver and the adjoint solver chosen in this
work are codes developed by Jameson.21, 28–30 The
flow solver solves the three dimensional Navier-Stokes
equations by employing the JST scheme, together with
a multistage explicit time stepping scheme. Rapid
convergence to a steady state is achieved via variable
local time steps, residual averaging, and a full approx-
imation multi-grid scheme. The adjoint solver solves

1Studies27 have shown that, for the design purpose, only a 3
order of magnitude drop in the residual of the flow calculation
and only a 2 order of magnitude drop in the residual of the
adjoint calculation are sufficient.
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Environment
Single processor computing

Flow Solver

Parallel computing
Environment

Notation:

−Aerodynamics
Gradient Calculation

−Structure

Shape & Grid
Modification

Adjoint Solver

Design Cycle
repeated until
convergence

Fig. 4 Design cycle

the corresponding adjoint equations using similar tech-
niques to those of the flow solver. In fact much of the
software is shared by the flow and adjoint solvers.

RESULTS

Redesign of Boeing 747 wing

We present results to show that the optimization
can successfully trade planform parameters. In these
calculations the flow was modeled by the Reynolds Av-
eraged Navier-Stokes equation, with a Baldwin Lomax
turbulence model. This turbulence model was con-
sidered sufficient because the optimization is near the
cruise condition with attach flow. The case chosen
is the Boeing 747 wing fuselage combination at Mach
0.90 and a lift coefficient CL = 0.42. The computa-
tional mesh is shown in Fig. 5.

In this test case, the Mach Number is significantly
higher than the current normal cruising Mach number
of 0.85. We allowed section changes together with vari-
ations of sweepback, span, root chord, mid-span chord,
and tip chord. Figure 6 shows a baseline calculation
with the planform fixed. Here the drag was reduced
from 181.9 counts to 127.9 counts (29.7% reduction)
in 50 design iterations with relatively small changes in
the section shape.

Figure 7 shows the effect of allowing changes in
sweepback, span, root chord, mid-span chord, and
tip chord. The parameter α3 was chosen according
to formula (19) such that the cost function corre-
sponds to maximizing the range of the aircraft. In
50 design iterations the drag was reduced from 181.9
counts to 124.9 counts (31.3% reduction), while the
dimensionless structure weight was slightly increased
from 0.02956 to .03047 (3.1% increase). This test case
shows a good trade off among the planform variables to

B747 WING-BODY                                                                  
 GRID  256 X   64 X   48

  K   =    1

Fig. 5 Computational Grid of the B747-200 Wing
Fuselage

achieve an optimal performance for a realistic design.
At Mach 0.9, which is an off design point, drag is quite
high. As a result, the optimizer increases the sweep-
back to weaken shock drag, increases the length of the
span to reduce vortex drag, and reduces thickness to
chord ratio (with the thickness fixed) to alleviate shock
drag. However, these changes cause a slight increase of
wing weight. But if the wing structural weight is not
included in the cost function, the optimal shape will
result in an excessive span, chord-length, and sweep
angle.

As a result of the trade between drag reductions
due to the increase in sweepback and span, and in-
creased wing weight, the overall drag reduction was
more than in the previous figure, while the wing weight
was slightly increased. These results verify the feasi-
bility of including the effects of planform variations in
the optimization.

Pareto Front

The problem of optimizing both drag and weight
can be treated as a multi-objective function optimiza-
tion. However, the multiple objective functions can be
combined to a single objective function using weight-
ing constants, as done in this paper. A different choice
of α1 and α3 will result in a different optimum shape.
The optimum shapes should not dominate each other,
and therefore lie on the Pareto front, where no im-
provement can be achieved in one objective component
that doesn’t lead to degration in the remaining com-
ponent. Therefore, by varying α1 and α3, it is possible
to compute the Pareto front.
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Figure 8 shows the effect of the weighting param-
eters (α1, α3) on the optimal design. As before the
design variables are sweepback, span, chords at three
different span locations and mesh points on the wing
surface. In Fig. 8 each point corresponds to an optimal
shape for one specific choice of (α1, α3). By varying α1

and α3, we capture a Pareto front that bounds all the
solutions. All points on this front are acceptable solu-
tions, and any further choice to select the final design
depends on the nature of the problem and several other
factors. The Pareto front can be very useful to the de-
signer because it represents a set which is optimal in
the sense that no improvement can be achieved in one
objective component that doesn’t lead to degradation
in at least one of the remaining components. The op-
timum shape that corresponds to the optimal Breguet
range is also marked in the figure.

Figure 9 shows the change of planform when the
ratio α3

α1

=1. This ratio of α3

α1

is sufficient to cause
the optimizer to reduce the sweepback, reducing wing
weight. But it allows the optimizer to increase the
span, reducing vortex drag. This yields an optimum
shape which has low structure weight and moderate
drag.

CONCLUSION

The shape changes in the section needed to improve
the transonic wing design are quite small. However,
in order to obtain a true optimum design larger scale
changes such as changes in the wing planform (sweep-
back, span, chord, and taper) should be considered.
Because these directly affect the structure weight, a
meaningful result can only be obtained by considering
a cost function that takes account of both the aerody-
namic characteristics and the weight.

This paper develops and validates an aerodynamic
design methodology based on the Navier-Stokes equa-
tions for planform optimization. A model for the struc-
tural weight is included in the design cost function.
The results of optimizing a wing-fuselage of a commer-
cial transonic transport aircraft has highlighted the
importance of the structural weight model and the the
viscous effects on the design process. The trade-off
between the structural cost function and the aerody-
namic cost function prevents an unrealistic result and
leads to a useful design. The inclusion of viscous effects
increases the level of realism of the design. Methods
of combining drag and wing weight also provide the
designer a better opportunity to choose the final opti-
mum shape.
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B747 WING-BODY                                                                  
Mach: 0.900    Alpha: 1.765                                                     
CL:  0.419    CD: 0.01279    CM:-0.1384                                         
Design:  50    Residual:  0.3633E+00                                            
Grid: 257X 65X 49                                                               
Sweep: 42.1138   Span(ft):  212.43                                              
C1(ft):  48.13   C2:  29.13   C3:  10.78                                        
CW:  0.02956  I:  0.01279                                                       

Cl:  0.346    Cd: 0.06819    Cm:-0.1354                                         
Root Section:  13.6% Semi-Span

Cp = -2.0

Cl:  0.614    Cd: 0.00146    Cm:-0.2404                                         
Mid Section:  50.8% Semi-Span

Cp = -2.0

Cl:  0.376    Cd:-0.02298    Cm:-0.1803                                         
Tip Section:  92.5% Semi-Span

Cp = -2.0

Fig. 6 Redesign of Boeing 747, fixed planform
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B747 WING-BODY                                                                  
Mach: 0.900    Alpha: 1.760                                                     
CL:  0.419    CD: 0.01249    CM:-0.1612                                         
Design:  50    Residual:  0.4527E+00                                            
Grid: 257X 65X 49                                                               
Sweep: 43.0188   Span(ft):  213.48                                              
C1(ft):  48.48   C2:  29.99   C3:  11.15                                        
CW:  0.03047  I:  0.02163                                                       

Cl:  0.341    Cd: 0.06667    Cm:-0.1332                                         
Root Section:  13.6% Semi-Span

Cp = -2.0

Cl:  0.592    Cd: 0.00072    Cm:-0.2293                                         
Mid Section:  50.8% Semi-Span

Cp = -2.0

Cl:  0.362    Cd:-0.02080    Cm:-0.1743                                         
Tip Section:  92.5% Semi-Span

Cp = -2.0

Fig. 7 Redesign of Boeing 747, variable planform and maximizing range
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Fig. 8 Pareto front of section and planform modifications

Fig. 9 Superposition of the baseline geometry (green/light) and the optimized planform geometry
(blue/dark), using α1=1 and α3=1
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