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Existence of Periodic Solution for a Predator-prey

System with Feedback Control
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Abstract: A Hassell-Varely type predator-prey system with feedback controls is studied. Using the
comparison, continuation theorems and coincidence degree theorem, the existence of positive periodic
solutions for the system is proven. Also, a set of sufficient conditions for global stability is derived through
constructing a Lyapunov function.
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In 1969, Hassell and varley "' introduced a general
predator-prey system, in which the functional response
dependents on the predator density in different way. It is
called a Hassell-varley (HV for short) type functional

response which take the following form:

. —
dt K™ my” +x
7€(0,1), (1)
Yo yed
dt my” +x

where y is called the HV constant. In the typical
predator-prey interaction where predators do not form
groups, one can assume that terrestrial y =1, producing
the so-called ratio-dependent PP system. For terrestrial
predators that form a fixed number of tight groups, it is
often reasonable to assume y =1/2 . For aquatic preda-
tors that form a fixed number of tights groups, y=1/3
may be more appropriate. A unified mechanistic approa-
ch was provided by Cosner !, where the HV functional
response was derived. Hsu ! studied system (1) and
presented a systematic global qualitative analysis to it.

However, the logistic growth does not fit well for
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some populations. For example, the Gompertz growth
X' =xIn(K /X) provides an excellent fit to empirical
growth curves for avascular tumors and vascular tumors
in their early stages*!. Indeed, many data have shown
that per capita growth functions of populations are well
fitted by logarithmic regressions, for example, the Gom-
pertz model has been almost universally used to descry-

[6-7] [8-9]

be the growth of microorganisms """, some creature

and the innovation diffusion such as digital cellular tele-

[19-111 and the references cited therein.

phones
Motivated by the above reasons, we consider a HV

type predator-prey model with controls,
X' (1) = x (Dla () - b () Inx (1) -
a0 g o, o),

mx, () +x (1)
X' (1) =X, (D&, (1) - bz (OInx, )+

¢, Ox 7O,
O+ x @ d,(Hu, ()],
u'(t) = o, (t)- B OU O+ 7, 1OX 1),
U, (t) = a, (1) = B,(OU, () + 7, (D)X, (1),
(2
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where X (t),i=1,2 denote the density of prey and
predator at time t,u.(t),i=12 are control variables,
a,b,c,d,a, 0,7 €(R,R,),i=1,2 are all w -perio-
dic functions of t and m is a nonnegative constant.

For convenience, throughout this paper, we shall
use the following notations. For a continuous W -perio-
dic functions f(t),

M = max (1), ft = min (1), f:ﬂ0 f(t)dt .

Throughout this paper, we suppose that the follow-
ing conditions are satisfied:

(F1) a,b,c.d.,e,p,7.€(R,R,),i=12 are non-
negative W -periodic functions of t.

(F2) a,p €(R,R),i=1,2 arew -periodic func-
tions with a‘ >0,8">0.

The organization of this paper is as follows. In the
next section, we discuss the existence of positive W -
periodic solutions of system (2). In section 3, by cons-
tructing a Lyapunov functional, we establish a sufficient
condition for the global stability of w -periodic solu-

tions of system (2).
1 Exigenceof postiveperiodic solutions

Let X

L:DomL c X =Y be a linear mapping and N : X —

and Y be normed vector spaces. Let

Y be a continuous mapping. The mapping L will be
called a Fredholm mapping of index zero if dimKerlL =
codimImL <oo and ImL is closed in Y. If Lis a
Fredholm mapping of index zero, then there exist
continuous projectors P:X— X and Q:Y —Y such
that ImP=KerL and ImL=KerQ=Im(l-Q) . It
follows that L|DomLnKerP:(I-P)X ->ImL is
invertible and its inverse is denoted by K,.If 2 isa
bounded open subset of X, the mapping N is called
L — compact on o) , if QN(E) is bounded and
KP(1-Q)N: 2 —> X is compact. Because ImQ is
isomorphic to KerL , there exists an isomorphism
J:ImQ — KerlL . In the proof of our existence result,
we need the following continuation theorem.

L:DomLc X —>Y be the
Fredholm injection with index of 0, N :Q2Y on

Lemma 1'% Let

oL -compact. Suppose A €(0,1) holds, then Lx=
ANX ; Suppose xeKerL16£2, QNx=0 holds, and
deg(JON |¢oinao) # 0, where deg(JON [ nsp) - TE-
presents the Brouwer degree. Then Lx=NXx has at
least one solution on DomL (2.

Lemma 2" Suppose ¢(t) is continuous diffe-

renttial w -periodic function. Then

9(4)—9() < sup 4(9)— inf, 4(5) <

se[0,w

%m #(s)| s, t, e[O.W].

Theorem 1 Under the assumptions of (F1), (F2).
Then system (2) has at least one positive W -periodic
solution.

Proof Let X (t)=exp(y;(t)),i=12,u,(t)=y,(),
u,(t) = y,(t), then the system (2) becomes

, C (t)eVz(l)
y () =a ) -b 1y —W -
d] ®y, 1) = f] >

, c (t)e)ﬁ t)
Y, (t) =4a, (t)_bz (t)yz (U“'W‘ (3)

d, )y, = f,,
Yo () = a, ()= B 1)y, ) +7,(0)e"V = f,,
Y/ =, (0= A0y, O+, 0" = 1.

In order to use Lemma 1 to system (3), we set X =
Y (®) =y, @, Y, (1), Y50, y, ()" : ¥ (1) € PC, i =1,2,3,
44 =Y, with norm || [I=] (y, (1), Y, (). Y (0. Y, (0)" |I=

i=4 i=4
DIy ® =Y max | y,®)], then (X,|.[)is a Banach
i=1

i=1

space.
Y, yr(t)
Set L:DomLc X —»Y,as L| ! |=| : |,
Y, y, ()
where DomL={Y ())=(y,.¥,.Y,.Y,)"eX |Y'()ePC, } =
YO =YY Y55 Ya) € X[Y(©) ePC,} .

fl
At the same time , we denote N(y(t))=| : |, and
f4
define two projectors P and Q as P: X — X,
[ vt
1 .
PY@)=—
W w
[RAGL
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Q:Y >Y ,as
LOT "y, @t
0 O] 1 :
Lo w o
f,(t) [AGLE
Obviously,
fi (D)
ImL={z= eY:jO f.(t)dt=0,i=1,2,3,4},
f, (0
and
el
KerL=:x:xe X,ye| : |[eR*}=ImP,
€,

ImL={xeY :jow f(t)dt =0,i =1,2,3,4} = KerQ,
are closed setsin Y and dimKerl = codimIlmlL =4.
Hence, L is a Fredholm mapping of index zero.
Furthermore, the generalized inverse of L:K,:ImL—

KerP N DomL has the form
"t t _i w et
Yy (t) jo f (s)ds Wjo jo f (s)dsdt

y; ()
K, (2)=K _
S ys (©) t 1 pwet
AU IO f4(S)dS—Wj0 jo f,(s)dsdt
J, fioat
Thus, NY@©) =~ © |, and
J, fuoat
j; f (t)dt
Ko (1=Q)N(y(t)) = : +
[ f.adt
" f ()t " £ (s)dsdt
[l_ljj‘o : _i.[o.[o :
2w w ’ w -
[Mtmdt | | "] £ (s)dsdt

By Lebesque convergence theorem, we know QN
and K (I —Q)N(E) are continuous. Moreover, by
Lemma 1, we get QN (?2), Ko(l —Q)N(?)) are relatively
compact for any open bounded set 2 c X . Hence, N
is L -compact on 5, here (2 is any open bounded
setin X.

Now we are in a position to search for an

appropriate open bounded subset (2 for the applica-

tion of Lemma 1, corresponding to equation Lx = ANX,
Ae 0,1 , wehave

y' () =41 (1),i=12,3,4. @)

Suppose that Y (t) = (¥, (1), Y, (1), y; (1), ¥, ()" € X

is a periodic solution of system (3) for a certain

Ae 0,1

[0,w], we can obtain

, By integrating system (4) over the interval

jow y'(t)dt = A jow f(t)dt, i =1,2,3,4. 5)
Thus,
Jw{a(t) b(t)yl(t)—%‘
A Oy =0
c, (e
IOw{a O-b,OY, O+ e~ (6)

d, ()Y, (D)}t =0
[ ® - B,OY, O+, 0" dt =0,
IOW {a, (O =B, (O, (1) +7, (e }dt =0

Y () = (¥, (D), Y, (D), Y, (1), y, ()" X,
then there exist & 7, €[0,w] i=1,2,3,4, such that
Yi(&) = tinf Yi(©), Yi(7)= sup y;(t),
€[0.w] te[0.w]
i=1,2,3,4. (7
It follows from Eq. (5) and Eq. (6) that

Note that

["by,mdt<["amadt, thus (&)< %

1
By Lemma 2, the comparison theorem and the first
Eq. (6), we have

1w |
%0n) < v+ [ 1y Oldt<

9’ I

=+aw

A.(8)

o

Similarly, we have

¥2(6) <

a+c

2

1w
V21) < V2(&)+ [y (0 ldt <

B+ — —
2 +(a,+C,)W=A,,
2

()< 2
B

Lew
Vi) < Y5 (&) + 2 [y ldt <
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a +yet  — —
AL (e e w= A,
1
0!"1‘]/
V()< ——=—,
B,

2

1w
y4(774) < y4(§4)+5.l'0 | y4 (t) |dt <

T aA
o, +y.eh — —
DI (a4 et )W A,
2

On the other hand, by Eq. (6) and comparison

theorem, we get
by, (ryw> [ b Dy, dt > [ a0 -

c(t eyz(t)*y)’z(t)
1()—_d](t)y3(’73)}dt =

w A=)y, ()
[Mam-2D " 4 wy,mrd=

_ oA
a - 4e m _d1A3
Yi(m,) = = .
1\ b1

Thus by Lemma 2, we obtain

j |y (®)]dt >

(&)=Y, 07) =

Cle(l A
a —

L
m_ -aw=B,.
bl

Similarly, we have

ACSESACAE j|yz<t>|dt

% b—d A4_ ;1+E)WEst

1w |
V(&)= ysm) =2 [ 1y ldt >

L AB
a, +ye” DY
SIS et W= B,
1

1Lew
y4(§4) = y4(774)_5'[0 | Y, (t) |dt =

a, +7,e”

B.
Welet M, =max{| B, |,|A |}, i=12,3,4, respec-
tively. It is obvious that M,,i=1,2,3,4 are indepen-
dent of A . Similar to the proof of Theorem 3.1 of [14],

— a,+7,e")w=B,.

we can find a sufficiently large M >0 denote the set

2= 0=y, 1), Y, 1), y; O, y, () e X | Y [[< M.
It follows that for each ue KerL(10£2, QNu =0

and deg{JONu, 2N Kerl,0} =0.
By now we have proved that (2 verifies all the
requirements in Lemma 1. Hence Eq. (2) has at least one

positive W -periodic solution. The proof is complete.
2 Uniqueness and global stability

We proceed to the discussion on the uniqueness
and global stability of the w -periodic solution x'(t) in
Theorem 1. It is immediate that if x'(t)is golbally
asymptotically stable then X' (t) is unique in fact.

Lemma 3" Let f be a nonnegative function
defined on [0,+w0)such that f is integrable on [0,
+o0) and is uniformly continuous on [0,40). Then
lim f(t)=0.

t—>+o

Theorem 2 let X (t)= (X (1), X, (t),u,(t),u,(t)"
denote any positive solution of Eq. (2) , then there exists
a T>0 such that if t>T, m <x({t)<M,,i=12,
m,< u,(t) <M;,m, <u,(t)<M,.

Proof It follows from the positivity of the so-
lution of Eq. (2) that X/ (t) < X, (t)[a,(t)—b () Inx (1)].

A standard comparison argument shows that
M

. a
ng sup X, (t) < exp(bl—L) =M,.

1
Hence, there exists a T, >0 such that if t>T,,
X (t) < M, . According to the second equation of system
(2), we have
¢, (O ()
mx,” () + X, (t)
Thus there exista T, >T, such that

—a G My Mt T,

X, (<%, (D[a, (1) =b, (t) Inx, () + ik

X, (t) < exp(

2
For the third Eq. (2), we have
u®m<a"+7"M, -8 ).
Thus, there exista T, >T, such that

u (t)<LMlz M, t>T,.
B
Similarly, there exista T, >T, such that
M
u (t)<LE M, t>T,.
B

On the other hand, according to the second

equation of system (2), we have X, ()= x,(t)[a,(t)—
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bz (t) In X (t) _dz (t)U2 (t)] =X, (t)[a; - sz In X (t) - dzM M4 ]
Thus there exist a T, >T, such that

d M
X(t)>exp( bM 4)Em23t>T5,
2
for the first equation of system (2) , we have

X'(t) = X, (H[a- —b™ Inx, ()~ 22 M, —dMM,].
mm.,”

2
Then there exist T, > T, such that
M
LG M,
mm,”
b

q _d1MM3

X, (t) = exp(

y=m,t>T,.

For the third equation of system (2) we have
ull(t) = alL + 7/le1 _ﬂlM ul(t) .
Thus, there exist T, > T, such that

L L
a - +ym
M

u,(t) = L=m,t>T,.

1
Similarly, there exist T, >T, such that

L L
aZ +7/2 m2
M

u,(t) = =m,,t>T;.

2
Thus, the proof is complete.

We now formulate the global stability of the
positive W -periodic solution of system (2).

Theorem 3 In addition to (F1) and (F2), assume
further that hm inf A(t)>0,i=12,3,4, where
b (t) C (t)(M —2m ,) mc (t)M

A= . O
A(t) = b (t) c,®)(2mM,” +M —m(;/+1)m )
M, m*m,?
cOmymm" )

(M, +mM,")’

A1) = £ (1)—d (1),

A4 ®= ﬂz ®- dz (®.

Then system (2) has a unique positive W -periodic
solution which is globally asymptotically stable.

Proof Let X (t)= (X (t),%, (t),u, (t),u,”(t))" be a
positive W -periodic solution of system (2), and y(t) =
(y,(0), Y, (t),w, (t),w,(t))" be any positive solution of
system (2). It follows from Theorem 2 that exist positive
and M;,m,, such that for all t>T ,
m <x (1) <M,,i=1,2,m <u (t)<M,,m,<u," (t)<M,,
m <y, () <M;,i=12,m, <w (1) <M,,m, <w,(t) <M,.

We define V,(t)=|Inx (t)-Iny,(t)|,

constant T

calculating

the upper right derivative of V,(t) along solutions of
Eq. (2):

o N Y®
P06 o
sgn(x," (1) -y, () {~b (O Inx" (1) +b ()

¢ ()%, (H) oy,
mx,” (1) +x"(t)  my,” )+ y,(t)

d, (0, () +d, (Hw, (1)} < - 1( )% ()~

)Sgn(xl* ®O-y,®) =

Iny, (t)-

c,(M2mM,” + M, - m(;/+1)m2’) _
m’m,”

¢ (t)(M m,)
m’m,”

2

YO+

1%, (=Y, 1) [+ % ()~

YO +d, Oy ©O-w )]
Similarly, we define V,(t) = Inx, (t)=Iny,(t)|,
thus,
. X0y, 0
D'V, (t) = 2
© (Xz (A

)sgn(x, () -y, (1) <

b, () ) COmmm ).
(M, +mM.")
% ()~ Y, + an) Ly, )]+

2
d, () |u," (O -w, )]
Then we define:
Vi® =u O-w®],
V, (1) =u, O -w, (1)1,
DV,() <-A®)|u " ®O-w 1)+
7O O-y O],
DV,(1) <-A,®|u, O -w, (1) [+
7, (1) | Xz*(t)_ y,®)1.
We now define a Lyapunov functional V (t) as
V() =V,t)+V,[t)+V,(1)+V, (1),
then we can get for t>T ,
DVO® <-AMD % O-yO-AD]X O~
Y, (O =A My (O -w (1) [~
A0 U, (O -w, ()]
Where A(t)>0,i=1,2 are defined in Theorem 3.
By hypothesis, there exist positive constant
a;,i=1,2,3,4 and T >T such thatif t>T".
A)y=¢, >0. (10)
Integrating both sides of Eq. (10) on interval [T",t],
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VO + X[ AGX (9 y(5) lds+

[LA® I ) -w () ds+ [ A)]u,(9)-
w,(s)[ds <V/(T"),
thus,

VO+ X[l % )=y lds+ [La [u”(s)-

W () [ds + [z, [, (5) W, () [ds <V/(T")
t>T".

Then by Lemma 3, we have

fim | % (®) - ¥, (1) = 0.lim | 4] (®) - Wi (1) = 0, =1.2.

Which implies the positive W -periodic solution of
system (2) is globally asymptotically stable. The proof is

complete.
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