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Abstract: Hereditary integral formulations and differential formulations identified with spring and dashpot
constructions can express the viscoelastic behaviors of polymeric materials at small deformations. In this
paper, the models of small deformation serve as a starting point for the development of the viscoelastic
constitutive models of finite deformation. A process of finite deformation is decomposed into a series of
sub-processes of small deformation. The rotations of stress in sub-processes are determined by elastic
constitutive equation. The changes in the principal stress are calculated using the spring and dashpot
constructions. Then, a viscoelastic constitutive model, which satisfies the principle of objectivity, is
presented. Such form of constitutive model in principle can be suitable for a range of strain-rates, e.g. either
for quasi-static loading or for impact loading, with different material parameters in different strain-rates. As

an application example, the simple shear deformation is computed to show that the proposed model can

adequately well describe the viscoelastic behavior for polymers at finite deformations.
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The constitutive theories of viscoelastic material
have attracted substantial attention during the past half
century. The viscoelastic constitutive models at small
deformations can be described with hereditary integral
formulation or differential formulations!"?. The rate-
form rheological models are commonly used. However,
much less progress has been made for the constitutive
models at finite deformations. Several authors have
developed the viscoelastic constitutive model of finite
deformation on the basis of the second law of thermo-
dynamics (e.g. [3]). It is known that the constitutive
models for finite deformations must satisfy the principle
of objectivity'”. By replacing the strain rate with the
stretching (the deformation rate) and the material time
stress

derivative of Cauchy’s with an objective
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derivative of Cauchy’s stress, many authors developed
the rate-form rheological models for finite deformations
(e.g. [5]). However, there are infinite kinds of objective
rates of stress. We don’t know which kind of objective
rate is suitable for the constitutive equations. Many
authors chose an objective rate for the rate-form
constitutive equation without any suitable reason. There
are many disputes on how to choose the objective rate.
The definition of elastic and inelastic strain rates is
another issue in developing the constitutive equations of
finite deformation. Several authors have defined elastic
and inelastic deformation rates by using the decomposi-
tion of the deformation gradient as a product of elastic
and inelastic parts®. However, the multiplicative decom-

position of deformation gradient is not consistent with
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the additive decomposition of strain rate into the elastic
and inelastic parts. Lion!”! pushed forward the Green’s
strain to intermediate configuration and separated the
strain into elastic and inelastic parts to develop the finite
deformation constitutive relation consistent with the
second law of thermodynamics. Huber and Tsakmakis'™
separated the transformed Almansi strain into elastic and
inelastic parts and defined the associated stress to extend
constitutive laws of viscoelastic materials for small
deformations to these for finite deformations. Drozdov
et al'”’ made the objective inelastic stretching by means
of a rotation transformation and proposed that the
inelastic stretching is proportional to the total stretching.
Shen''” presented a decomposition of deformation into
elastic and inelastic parts and proposed a constitutive
model for elastic-plastic materials at finite deformations.

This paper will develop a constitutive model for
viscoelastic materials at finite deformations through a
new approach. Also it will calculate the stress of simple
shear to compare the constitutive equations proposed

here with the existing constitutive equations.

1 The constitutive models for finite
deformations

1.1 TheKevin model for finite defor mations

The Kelvin model for small deformation is

expressed by
o=A1tr(e)+2ue+n(é—
A/t (@)D +5" 1/3) ()1, (1)

where super dot denotes the material time derivative,
Aand u are Lame’s constants, # and #' are the
deviatoric and volumetric viscosities respectively, may
be taken as a function of stress or strain rate. For
simplification, let #' equal 7. In the case of finite
deformation, the model may be expressed by
o=1tr(InV)+2ulnV +nD, 2)
where D is the stretching (the deformation rate), V is
the left stretch tensor. In extending the limits of equation

(1), the strain is defined by the logarithmic of the left

stretch tensor, the strain rate is replaced by the stretching.

equation (2) satisfies the principle of objectivity.
1.2 TheMaxwell model for finite defor mations
The Maxwell model consists of a linear spring and
a dashpot in series. For small deformation, the linear
spring and the dashpot are expressed by
&, =(1+v)/E)o—(v/IE)tr(6)1, (3a)
&, =0/n, (3b)
respectively, where the sub indeces ¢ and v imply elastic
and viscoelastic respectively, E and v are the
Young’s modulus and the Poisson’s ratio. Assume that
the strain rate is equal to the sum of elastic and
viscoelastic strain rates, i.e.,
E=§,+8,, “)
thus, we have
é=((1+v)/ Eyo—(V/E)Y(6)] +0o /. %)
For finite deformations, the strain rate may be
replaced by the deformation rate, the deformation rate is
expressed as the sum of elastic and viscoelastic parts
D=D,+D,. (6)
The material time derivative is replaced by the
objective derivative. Thus, we obtain
D=((1+v)/E)o—(VE)u(o) +o /1, %
where og' is the objective derivative of the Cauchy’s
stress, which is commonly expressed in the form
c=6-Q.6+6Q., )
where £, is a rotational rate (spin). However, it is
difficult to choose the spin in Formulate (8). The
rotational rate is commonly obtained from the total
deformation gradient and is believed to be a geometric
quantity. The material rotational rate, the relative
rotational rate and the Euler frame rotational rate are
obtained from the total deformation gradient. We think
that the rotational rate applicable to the formulate (8) is
dependent on not only the total deformation but also the
viscoelastic part of the deformation. In addition, the
additive decomposition of deformation rate (6) is not
consistent with the multiplicative decomposition of

1 presented an approach

deformation gradient. Shen
through which the constitutive relations are extended to
include the case of finite deformation. In this study, we

develop the Maxwell model for finite using this
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approach. Consider a deformation from timez,, ¢, up
tot,: I —>F — F,—---F, . The deformation gradient
attime ¢ is expressed in the forms

E = RE]I/].]RZI = REIVAleI/AlvRZI' (9)

In Cartesien coordinate system, R, and R, are
orthotropic matrices, ¥, is diagram matrix. Sub indecs
e and v implies elastic and viscoelastic. The process
from ¢, to ¢, is a small deformation. When the
configuration at time ¢, undergoes the rotation R;,,
the deformation gradient at time f, becomes RV, .
Hence, for isotropic materials, R,, does not affect the
stress at the time ¢, and the principal direction of this
stress may be expressed by R,,. The stress at the
time ¢, is expressed in the form

6, = R0, R, (10)

From the decomposition (9), we have the decom-

position of logarithmic strain rate

InV, =V, ,+InV,, . (11)
The principal values of the stress at # can be

obtain as follows

InV, =((A+v)/ E)e,,—(v/ E)tre(6,))] +05,, /1,(12)
where, InV, =(InV,,-InI)/(t,-0), 6, =(c,,-0)/
(t, —0) . The elastic deformation V,,, may be obtained

as follows
InV,, =((1+v)/ E)e, —(v/ E)tr(c,,)1. (13)
Taking the free-stress intermediate configuration as
reference configuration, the deformation gradients at ¢,
and ¢, are respectively expressed by
F, =RV,

ile>

(14a)

and
F,,=F, (I/}.]sz] )71 = REszi.szzzb' (14b)

The deformation rate is decomposed in the follow-

ing form
D=R,(D,+D,)R,, (152)
where
D, =Vy;, (15b)
D,=(/2)V,'RIRV,+V,R,R V"), (15¢)

where D, is a diagonal matrix, D, is a symmetric
matrix whose diagonal components are all zero. The

_ T
c=R.0,R,

stress yields the viscous-strain rate

R,D, R, . Hence, if the elastic deformation vanishes,
the strain rate R,D,R, consequent upon the increase
of R, isindependent of the stress ¢ = R,o,R; . If the
deformation is elastic, R, does not affect the stress
either. Hence, we assume that in the process from ¢, to
t,, R,,,does not affect the stress at time ¢, . Thus, the
principal direction of the stress is R,,, and the stress
may be expressed by

6, =Ry,0,,R;,, (16)

The principal stresses may be obtained as follows

InV,,,=((1+v)/Ec,,)—(v/E)tr(6,,)I+6,, /1, (17)

where

nV,,, =(V,,, -InV,,)/ (&, 1),
6,=(0,,-0,)/ (1)

In a similar way, we can obtain the stresses from

the time ¢, up to the time ¢, . In the case of pure

elastic deformation, the stress-free intermediate

configurations at current times are the initial
configuration. We may obtain the constitutive equation
of elastic deformation

6,=R,o,R, , (i=1,2,3,n),

Ei™” i

(18a)

W =((1+v)/ E)é,— (VE)tr(6,,)I. (18b)

The equation (18) may be rewritten as

R,InV, RI =(1+)/ E)o—(v/ E)s(e)I,  (19)
where the objective rate o=c-— (R,R.)o+ o(R,R})
and is Euler frame corotational rate. The constitutive
equation (19) may be expressed by

D=((1+v)/ E)o-(v/ E)(o)], (20)
where the objective rate 0= 6— Q%6 +6Q2" and is the
logarithmic ~ corotational rate!'). If the elastic
deformation vanishes, the stress-free intermediate con-
figurations are the current configurations, the con-
stitutive relation becomes

D=ac/n. 21

The constitutive equations (19 and 21) are con-
sistent with the existing constitutive equations.
1.3 The Burgers constitutive model for finite

deformations

Burgers model can describe the main characters of
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some viscoelastic materials. Burgers model implies that
the deformation can be decomposed into three parts.
For small deformations, the constitutive equation is
expressed by
e=e +e,+e,, 0=0+0,+0,,
s=2ue , S=2u,e,+me,, S=mne,,
p=-K0,, p=-K,0, _(1/3)W292 >
p=~(113),0,,

where s is the deviatoric stress, e the deviatoric

(22a-h)

strain, p Hydrostatic stress, 6 the volumetric strain
and, K is bulk modulus. We easily obtain the
constitutive equation of p and 6. From equations
(22a) — (22e), we obtain the rate-form constitutive
equation of deviatoric stress and deviatoric strain

DPoS+ PSS+ p,S=qe+q,e. (23)

The constitutive equation of the p and the 6 is
easily obtained. By replacing the material time
derivative s by the objective derivative ;, the two-
order derivative § by the two-order objective derivative
nsn, the deviatoric strain rate e by the deviatoric
deformation rate D', the two-order derivative ¢ by
the objective derivative D of the deformation rate,
we can obtain a rate-form constitutive equation for finite

deformations
00

DS+ P, ;—i- p,s=qD'+q, lo)’. (24)
However, it is difficult to choose the objective
derivatives for the constitutive equation. As in the case
of the Maxwell model, the equation (23) is extended to
include the case of finite deformation. Consider the

deformation from ¢, to ¢ up to ¢ I->F—>

no-

F, —»---— F,. The deformation gradient at time ¢ is
expressed in the forms

F = REII/MRL' (25)

We have the decomposition

Fl = REIVAle(])I/}.Ie(Z)I/}.lvRZ]’ (26)
where sub indexes e(1), e(2) and v imply the elastic
element, the Kelvin element and the dashpot element
respectively. Like the Maxwell model, the principal

direction of the stress at time ¢, is R, . For the small

deformation from time #, to ¢, we obtain the deviatoric

principal stress from the following equations

s, =2 (hqueu) —-(1/3)Itr(In me)), (27a)
5, =2u,(In Vite) —(1/3)Itr(In Vm(z))) +

1,(In Vl]e(Z)_(l /3)I tr(In I//Ue(Z)))9 (27b)
S = (InV; —(A/3) tr(In¥,)). (27¢)

Equations (27a) — (27c) are the elastic element, the
Kelvin element and the viscous-element constitutive
relations respectively. The equation (27b) implies that
the Kelvin element consists of spring parallel with
dashpot.

It is supposed that the deforming body
intermediately unloaded and again loaded generates the
same stress as this continuously loaded body does.
Hence, we can take the free-stress intermediate
configuration as reference configuration. Thus the

deformation gradients at # and ¢, are respectively

expressed by

F]b = RElV;.Ie(l) Vue(z)s (28a)
and

F,,=F,(V,, RZl)il = REZbV}.ZbRZZb' (28b)

As in the process from time #, to ¢, the stress at
t, can be obtained. The R,,, does not influence the
stress at ¢, . Thus, the principal direction of stress at ¢,
is R,,. From the equation similar to (27a) — (27c), we
can obtain the principal stress at ¢,. Thus, the Burgers
model for finite deformations is developed. In this study,
we propose an approach through which the constitutive
relation of small deformation is extended to include the

case of finite deformation.
2 Thesimple shear deformation

We calculate the stresses of simple shear deforma-
tion by using the proposed Burgers constitutive model
and the existing Burgers constitutive model (24) respec-
tively. The motion in the simple shear is expressed as

x =X +kX,, x,=X,, x=X,, 29)
and X,

ordinates of the current and the initial configuration

where x, are rectangular Cartesian co-
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respectively. We have the deformation gradient F

F=|l* 30
=lo 11l (30)

Here the matrix of tensor is presented in a 2x2
truncated matrix form with all other components that
have an index equal to 3 being identically zero. The
deformation rate (stretching) D and the material

rotational rate w are respectively
[0 1
p=K" |
211 0
and
k[0 1
w=— . 31
2[—1 0} 1)

The deformation gradient F is expressed in the
following form

F=R,V,R, =RR,V,R,. (32)

The Euler rotational rate and the relative rotational

rate are respectively

Q. =R.R! = k[0 (33a)
EOUETE TR 441 0f
and
. c [0 1
Q-kr'=—2F . (33b)
kK*+4|-1 0
The logarithmic rotational rate is
: 0 1
JELIELI k { } (34)
44k Jark? sh7'\(k/2) -1 0

The stresses are shown in Fig. 1 and Fig. 2. For the
principal stress, the proposed constitutive model is
between the existing constitutive models (24) where the
objective rate is the material corotational rate and the
relative corotational rate respectively. For the principal
direction, the proposed constitutive model is near to the
existing constitutive model (24) where the objective rate
is the material corotational rate.

Fig. 1 principal stress in simple shear resulting
from Burgers constitutive model where the shear strain
rate k=10s"', material parameters used z=1 500 MPa,
1,=1000 MPa, #,=100 MPa-s, #,=180 MPa-s . Curve
(1) is based on the proposed Burgers constitutive model.
Curves (2 — 6) are based on the existing Burgers con-

stitutive model (24) where the rotational rate is the

material rotational rate, the relative rotational rate, the
Euler frame rotational rate, the logarithmic rotational

rate and zero.

700
600
500
400
300
200
100

O 1 L

Principal stress / MPa

Shear straink
Fig.l Principal stressin simple shear resulting from
Burgers congtitutive model where the shear gtrain rate
k =10s® material parameters used 1, = 1500MPa,
&, =1000MPa, 5, =100MPa:s, n, =180MPa:-s.
Curve (1) is based on the proposed Burgers con-
stitutive model. Curves (2 6) are based on the
existing Burgers constitutive model (24) where the
rotational rate is the material rotational rate, the
relative rotational rate, the Euler frame rotational
rate, thelogarithmic rotational rate and zero
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Fig.2 Principal direction angle in simple shear
resulting from Burgers constitutive model where the
shear strain rate £ =10s®, material parameters used
= 1500MPa, u,=1000MPa, 7, =100MPa:s,
n,= 180MPas. Curve (1) is based on the proposed
Burgers constitutive model. Curves (2 6) are based
on the existing Burger s constitutive model (24) where
the rotational rate is the material rotational rate, the
relative rotational rate, the Euler frame rotational
rate, thelogarithmic rotational rate and zero

3 Conclusion

The constitutive model of viscoelastic material at
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small deformation can be expressed by the elastic
element and the dashpot in parallel and series. The
constitutive model at finite deformation must obey the
principle of objectivity. In this study, the constitutive
model of small deformation is extended to make the
model applicable in finite deformation through a new
approach. The deformation gradient is decomposed into
elastic and inelastic parts, and thus strain rate can be
expressed as the sum of elastic and inelastic parts. The
decomposition of deformation gradient is consistent
with that of strain rate. The rate-form constitutive
relations proposed here obey the principle of objectivity
though we need not make the choice of the objective
corotational rate of stress which is arbitrarily made by
many authors. The simple shear deformation has been
worked out by using the existing Burgers model of finite
deformation and the proposed model of finite
deformation. The proposed model can describe the

viscoelastic constitutive relation of finite deformation.
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