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Abstract: Hereditary integral formulations and differential formulations identified with spring and dashpot 
constructions can express the viscoelastic behaviors of polymeric materials at small deformations. In this 
paper, the models of small deformation serve as a starting point for the development of the viscoelastic 
constitutive models of finite deformation. A process of finite deformation is decomposed into a series of 
sub-processes of small deformation. The rotations of stress in sub-processes are determined by elastic 
constitutive equation. The changes in the principal stress are calculated using the spring and dashpot 
constructions. Then, a viscoelastic constitutive model, which satisfies the principle of objectivity, is 
presented. Such form of constitutive model in principle can be suitable for a range of strain-rates, e.g. either 
for quasi-static loading or for impact loading, with different material parameters in different strain-rates. As 
an application example, the simple shear deformation is computed to show that the proposed model can 
adequately well describe the viscoelastic behavior for polymers at finite deformations.  
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The constitutive theories of viscoelastic material 
have attracted substantial attention during the past half 
century. The viscoelastic constitutive models at small 
deformations can be described with hereditary integral 
formulation or differential formulations[1-2]. The rate- 
form rheological models are commonly used. However, 
much less progress has been made for the constitutive 
models at finite deformations. Several authors have 
developed the viscoelastic constitutive model of finite 
deformation on the basis of the second law of thermo- 
dynamics (e.g. [3]). It is known that the constitutive 
models for finite deformations must satisfy the principle 
of objectivity[4]. By replacing the strain rate with the 
stretching (the deformation rate) and the material time 
derivative of Cauchy’s stress with an objective 

derivative of Cauchy’s stress, many authors developed 
the rate-form rheological models for finite deformations 
(e.g. [5]). However, there are infinite kinds of objective 
rates of stress. We don’t know which kind of objective 
rate is suitable for the constitutive equations. Many 
authors chose an objective rate for the rate-form 
constitutive equation without any suitable reason. There 
are many disputes on how to choose the objective rate. 
The definition of elastic and inelastic strain rates is 
another issue in developing the constitutive equations of 
finite deformation. Several authors have defined elastic 
and inelastic deformation rates by using the decomposi- 
tion of the deformation gradient as a product of elastic 
and inelastic parts[6]. However, the multiplicative decom- 
position of deformation gradient is not consistent with 
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the additive decomposition of strain rate into the elastic 
and inelastic parts. Lion[7] pushed forward the Green’s 
strain to intermediate configuration and separated the 
strain into elastic and inelastic parts to develop the finite 
deformation constitutive relation consistent with the 
second law of thermodynamics. Huber and Tsakmakis[8] 
separated the transformed Almansi strain into elastic and 
inelastic parts and defined the associated stress to extend 
constitutive laws of viscoelastic materials for small 
deformations to these for finite deformations. Drozdov 
et al[9] made the objective inelastic stretching by means 
of a rotation transformation and proposed that the 
inelastic stretching is proportional to the total stretching. 
Shen[10]  presented a decomposition of deformation into 
elastic and inelastic parts and proposed a constitutive 
model for elastic-plastic materials at finite deformations. 

This paper will develop a constitutive model for 
viscoelastic materials at finite deformations through a 
new approach. Also it will calculate the stress of simple 
shear to compare the constitutive equations proposed 
here with the existing constitutive equations. 

1 The constitutive models for finite 
deformations 

1.1 The Kelvin model for finite deformations 
The Kelvin model for small deformation is 

expressed by 
tr( ) 2 (λ μ η= + + −σ I ε ε ε  

(1/ 3) tr ( ) ) (1/ 3) tr( ) ,λ η λ′+ε I ε I  (1) 

where super dot denotes the material time derivative, 
λ and μ  are Lame’s constants, η  and η′ are the 
deviatoric and volumetric viscosities respectively, may 
be taken as a function of stress or strain rate. For 
simplification, let η′  equal η . In the case of finite 
deformation, the model may be expressed by 

tr ( ln ) 2 ln ,λ μ η= + +σ I V V D  (2) 
where D  is the stretching (the deformation rate), V is 
the left stretch tensor. In extending the limits of equation 
(1), the strain is defined by the logarithmic of the left 
stretch tensor, the strain rate is replaced by the stretching. 

equation (2) satisfies the principle of objectivity. 
1.2 The Maxwell model for finite deformations 

The Maxwell model consists of a linear spring and 
a dashpot in series. For small deformation, the linear 
spring and the dashpot are expressed by 

((1 ) / ) (ν/ )tr( ) ,ν E E= + −eε σ σ I  (3a) 
/ ,η=vε σ  (3b) 

respectively, where the sub indeces e and v imply elastic 
and viscoelastic respectively, E  and ν  are the 
Young’s modulus and the Poisson’s ratio. Assume that 
the strain rate is equal to the sum of elastic and 
viscoelastic strain rates, i.e.,  

,= +e vε ε ε  (4) 
thus, we have 

((1 ) / ) (ν/ )tr( ) / .ν E E η= + − +ε σ σ I σ  (5) 
For finite deformations, the strain rate may be 

replaced by the deformation rate, the deformation rate is 
expressed as the sum of elastic and viscoelastic parts 

= +e vD D D . (6) 
The material time derivative is replaced by the 

objective derivative. Thus, we obtain 
((1 ) / ) (ν/ )tr( ) / ,

o o
ν E E η= + − +σ σ σD I  (7) 

where 
o
σ  is the objective derivative of the Cauchy’s 

stress, which is commonly expressed in the form 
,

o
= − +* *σ σ Ω σ σΩ  (8) 

where *Ω  is a rotational rate (spin). However, it is 
difficult to choose the spin in Formulate (8). The 
rotational rate is commonly obtained from the total 
deformation gradient and is believed to be a geometric 
quantity. The material rotational rate, the relative 
rotational rate and the Euler frame rotational rate are 
obtained from the total deformation gradient. We think 
that the rotational rate applicable to the formulate (8) is  
dependent on not only the total deformation but also the 
viscoelastic part of the deformation. In addition, the 
additive decomposition of deformation rate (6) is not 
consistent with the multiplicative decomposition of 
deformation gradient. Shen[10] presented an approach 
through which the constitutive relations are extended to 
include the case of finite deformation. In this study, we 
develop the Maxwell model for finite using this 



 
66 宁波大学学报（理工版） 2012  

 

approach. Consider a deformation from time 0t , 1t  up 
to nt : 1 2 n→ → →I F F F . The deformation gradient 
at time 1t  is expressed in the forms 

T T
1 1 1 1 1 1 1 1= = .E λ L E λ e λ v LF R V R R V V R  (9) 

In Cartesien coordinate system, ER  and LR  are 
orthotropic matrices, λV  is diagram matrix. Sub indecs 
e and v implies elastic and viscoelastic. The process 
from 0t  to 1t  is a small deformation. When the 
configuration at time 0t  undergoes the rotation T

1LR , 
the deformation gradient at time 1t  becomes 1 1E λR V . 
Hence, for isotropic materials, 1LR  does not affect the 
stress at the time 1t , and the principal direction of this 
stress may be expressed by 1ER . The stress at the 
time 1t is expressed in the form 

T
1 1 1 1= .t E λ Eσ R σ R  (10) 

From the decomposition (9), we have the decom- 
position of logarithmic strain rate  

1 1 1ln ln ln .
• • •

= +λ λ e λ vV V V  (11) 

The principal values of the stress at 1t  can be 
obtain as follows 

1 1 1 1ln ((1 ) / ) ( tr( ) / ,ν E ν / E) η
•

= + − +λ λ λ λV σ σ I σ (12) 

where, 1 1 1ln (ln ln ) / ( 0)t
•

= − −λ λV V I , 1 1( ) /= −λ λσ σ O  

1( 0)t − . The elastic deformation 1λ eV  may be obtained 
as follows  

1 1 1ln ((1 ) / ) ( / tr( ) .ν E ν E )= + −λ e λ λV σ σ I  (13) 

Taking the free-stress intermediate configuration as 
reference configuration, the deformation gradients at 1t  
and 2t  are respectively expressed by 

1 1 1 ,=b E λ eF R V  (14a) 

and  
T 1

2 2 1 1( )−=b λ v LF F V R T
2 2 2 .= E b λ b L bR V R  (14b) 

The deformation rate is decomposed in the follow- 
ing form  

T= ( ) ,E a b ED R D + D R  (15a) 
where  

-1,=a λ λD V V  (15b) 
1 T T 1(1/ 2)( ),− −= +b λ L L λ λ L L λD V R R V V R R V  (15c) 

where aD  is a diagonal matrix, bD  is a symmetric 
matrix whose diagonal components are all zero. The 
stress T= E λ Eσ R σ R  yields the viscous-strain rate 

T
E a ER D R . Hence, if the elastic deformation vanishes, 

the strain rate T
E b ER D R  consequent upon the increase 

of LR  is independent of the stress T= E λ Eσ R σ R . If the 
deformation is elastic, LR  does not affect the stress 
either. Hence, we assume that in the process from 1t  to 

2t , 2L bR does not affect the stress at time 2t . Thus, the 
principal direction of the stress is 2E bR  and the stress 
may be expressed by 

T
2 2 2 2 .=t E b λ E bσ R σ R  (16) 

The principal stresses may be obtained as follows 

2 2 2 2ln ((1 )/ ) ( / )tr( ) / ,ν E ν E η
•

= + − +λ b λ λ λV σ σ I σ  (17) 

where  

2 2 1 2 1ln (ln ln ) / ( ),t t
•

= − −λ b λ b λ eV V V
 2 2 1 2 1( ) / ( ).t t= − −λ λ λσ σ σ  

In a similar way, we can obtain the stresses from 
the time 3t  up to the time nt . In the case of pure 
elastic deformation, the stress-free intermediate 
configurations at current times are the initial 
configuration. We may obtain the constitutive equation 
of elastic deformation 

T=ti Ei λi Eiσ R σ R , ( 1, 2, 3,i n= ), (18a)  

ln ((1 ν) / ) (ν/ )tr( ) .E E
•

= + −λi λi λiV σ σ I  (18b) 

The equation (18) may be rewritten as 

Tln ((1 ) / ) ( )tr( ) ,ν E ν / E
•

= + −
o o

E λ ER V R σ σ I  (19) 

where the objective rate T( )= − +
o

E Eσ σ R R σ T( )E Eσ R R  
and is Euler frame corotational rate. The constitutive 
equation (19) may be expressed by 

((1 ) / ) ( / )tr( ) ,
o o

ν E ν E= + −D σ σ I  (20) 
where the objective rate log log

o
= − +σ σ Ω σ σΩ and is the 

logarithmic corotational rate[11]. If the elastic 
deformation vanishes, the stress-free intermediate con- 
figurations are the current configurations, the con- 
stitutive relation becomes 

/ η.=D σ  (21) 
The constitutive equations (19 and 21) are con- 

sistent with the existing constitutive equations. 
1.3 The Burgers constitutive model for finite 

deformations 
Burgers model can describe the main characters of 
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some viscoelastic materials. Burgers model implies that 
the deformation can be decomposed into three parts.  
For small deformations, the constitutive equation is 
expressed by 

1 2 3= + +e e e e , 1 2 3,θ θ θ θ= + +  

1 12μ=s e , 2 2 2 22 ,μ η= +s e e  3 3 ,η=s e  

1 1,p K θ= − 2 2 2 2(1 / 3)p K θ η θ= − − , 

3 3(1/3) ,p η θ= −  (22a-h) 

where s  is the deviatoric stress, e  the deviatoric 
strain, p  Hydrostatic stress, θ  the volumetric strain 
and, K is bulk modulus. We easily obtain the 
constitutive equation of p  and θ . From equations 
(22a) – (22e), we obtain the rate-form constitutive 
equation of deviatoric stress and deviatoric strain 

0 1 2 1 2 .p p p q q+ + = +s s s e e  (23)  

The constitutive equation of the p  and the θ  is 
easily obtained. By replacing the material time 
derivative s  by the objective derivative 

o
s , the two- 

order derivative s  by the two-order objective derivative 
oo
s , the deviatoric strain rate e  by the deviatoric 

deformation rate ′D , the two-order derivative e  by 
the objective derivative 

o
′D  of the deformation rate,  

we can obtain a rate-form constitutive equation for finite 
deformations 

o oo o

0 1 2 1 2 .p p p q q′ ′+ + = +s s s D D  (24) 

However, it is difficult to choose the objective 
derivatives for the constitutive equation. As in the case 
of the Maxwell model, the equation (23) is extended to 
include the case of finite deformation. Consider the 
deformation from 0t  to 1t  up to nt : 1→ →I F  

2 n→ →F F . The deformation gradient at time 1t  is 
expressed in the forms 

T
1 1 1 1.= E λ LF R V R  (25) 

We have the decomposition 
T

1 1 1 (1) (2) 1 1,= E λ e λ1e λ v LF R V V V R  (26) 
where sub indexes e(1), e(2) and v imply the elastic  
element, the Kelvin element and the dashpot element  
respectively. Like the Maxwell model, the principal 
direction of the stress at time 1t  is 1ER . For the small 

deformation from time 0t  to 1t , we obtain the deviatoric 
principal stress from the following equations 

1 1 (1) (1)2 (ln (1/ 3) tr (ln )),μ= −λ λ1e λ1es V I V  (27a) 

1 2 (2) (2)2 (ln (1/ 3) tr (ln ))μ= − +λ λ1e λ1es V I V  

2 (2) (2)(ln (1/ 3) tr (ln )),η
• •

−λ1e λ1eV I V  (27b) 

1 3 1 1(ln (1/ 3) tr (ln )).η I
• •

= −λ λ v λ vs V V  (27c) 

Equations (27a) – (27c) are the elastic element, the 
Kelvin element and the viscous-element constitutive 
relations respectively. The equation (27b) implies that 
the Kelvin element consists of spring parallel with 
dashpot.  

It is supposed that the deforming body 
intermediately unloaded and again loaded generates the 
same stress as this continuously loaded body does. 
Hence, we can take the free-stress intermediate 
configuration as reference configuration. Thus the 
deformation gradients at 1t  and 2t  are respectively 
expressed by 

1 1 1 (1) 1 (2) ,=b E λ e λ eF R V V  (28a) 
and  

T 1
2 2 1 1( )−=b λ v LF F V R T

2 2 2 .= E b λ b L bR V R  (28b) 
As in the process from time 0t  to 1t , the stress at 

2t  can be obtained. The 2L bR  does not influence the 
stress at 2t . Thus, the principal direction of stress at 2t  
is 2E bR . From the equation similar to (27a) – (27c), we 
can obtain the principal stress at 2.t  Thus, the Burgers 
model for finite deformations is developed. In this study, 
we propose an approach through which the constitutive 
relation of small deformation is extended to include the 
case of finite deformation. 

2 The simple shear deformation 

We calculate the stresses of simple shear deforma- 
tion by using the proposed Burgers constitutive model 
and the existing Burgers constitutive model (24) respec-  
tively. The motion in the simple shear is expressed as 

1 1 2 ,x X kX= +  2 2 ,x X=  3 3 ,x X=  (29) 

where ix  and iX  are rectangular Cartesian co- 
ordinates of the current and the initial configuration 
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respectively. We have the deformation gradient F  
1

.
0 1
k⎡ ⎤

= ⎢ ⎥
⎣ ⎦

F  (30) 

Here the matrix of tensor is presented in a 2 2×  
truncated matrix form with all other components that 
have an index equal to 3 being identically zero. The 
deformation rate (stretching) D  and the material 
rotational rate w  are respectively 

0 1
,

1 02
k ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

D  

and  
0 1

.
1 02

k ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

w  (31) 

The deformation gradient F  is expressed in the 
following form 

T T.= =E λ L L λ LF R V R RR V R  (32) 

The Euler rotational rate and the relative rotational 
rate are respectively 

T=E E EΩ R R 2

0 1
,

1 04
k

k
⎡ ⎤

= ⎢ ⎥−+ ⎣ ⎦
 (33a) 

and 

1−=Ω RR 2

0 12 .
1 04

k
k

⎡ ⎤
= ⎢ ⎥−+ ⎣ ⎦

 (33b) 

The logarithmic rotational rate is 

Log 2 2 1

0 14( ) .
1 04 4 4 sh ( /2)

k k
k k k−

⎡ ⎤
= + ⎢ ⎥−+ + ⎣ ⎦

Ω  (34) 

The stresses are shown in Fig. 1 and Fig. 2. For the 
principal stress, the proposed constitutive model is 
between the existing constitutive models (24) where the 
objective rate is the material corotational rate and the 
relative corotational rate respectively. For the principal 
direction, the proposed constitutive model is near to the 
existing constitutive model (24) where the objective rate 
is the material corotational rate.  

Fig. 1 principal stress in simple shear resulting 
from Burgers constitutive model where the shear strain 
rate

 

110 sk −= , material parameters used 1 1 500 MPa,μ =  

2 1000 MPa,μ = 2 100 MPa s,η = ⋅ 3 180 MPa sη = ⋅ . Curve 
(1) is based on the proposed Burgers constitutive model. 
Curves (2 – 6) are based on the existing Burgers con- 
stitutive model (24) where the rotational rate is the 

material rotational rate, the relative rotational rate, the 
Euler frame rotational rate, the logarithmic rotational 
rate and zero. 

 
Fig.1  Principal stress in simple shear resulting from 
Burgers constitutive model where the shear strain rate 
k =10 s-1 material parameters used

 
1μ = 1 500 MPa , 

2μ = 1 000 MPa, 2η = 100 MPa·s,

 
3η = 180 MPa·s. 

Curve (1) is based on the proposed Burgers con- 
stitutive model. Curves (2－6) are based on the 
existing Burgers constitutive model (24) where the 
rotational rate is the material rotational rate, the 
relative rotational rate, the Euler frame rotational 

rate, the logarithmic rotational rate and zero 

 
Fig.2 Principal direction angle in simple shear 
resulting from Burgers constitutive model where the 
shear strain rate

 

k =10 s-1, material parameters used 

1μ = 1 500 MPa, 2μ = 1 000 MPa, 2η = 100 MPa·s, 
3η =

 

180 MPa·s. Curve (1) is based on the proposed 
Burgers constitutive model. Curves (2－6) are based 
on the existing Burgers constitutive model (24) where 
the rotational rate is the material rotational rate, the 
relative rotational rate, the Euler frame rotational  

rate, the logarithmic rotational rate and zero 

3 Conclusion 

The constitutive model of viscoelastic material at 
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small deformation can be expressed by the elastic 
element and the dashpot in parallel and series. The 
constitutive model at finite deformation must obey the 
principle of objectivity. In this study, the constitutive 
model of small deformation is extended to make the 
model applicable in finite deformation through a new 
approach. The deformation gradient is decomposed into 
elastic and inelastic parts, and thus strain rate can be 
expressed as the sum of elastic and inelastic parts. The 
decomposition of deformation gradient is consistent 
with that of strain rate. The rate-form constitutive 
relations proposed here obey the principle of objectivity 
though we need not make the choice of the objective 
corotational rate of stress which is arbitrarily made by 
many authors. The simple shear deformation has been 
worked out by using the existing Burgers model of finite 
deformation and the proposed model of finite 
deformation. The proposed model can describe the 
viscoelastic constitutive relation of finite deformation. 

References: 
[1] Ferry J D. Viscoelastic properties of polymers[M]. 3rd ed. 

New York: John Wiley, 1980. 
[2] Flüggle W. Viscoelasticity[M]. 2nd ed. New York: 

Springer-Verlag, 1975. 

[3] Holzapfel G A, Simo J C. A new viscoelastic constitutive 
model for continuous media at finite thermomechanical 
changes[J]. Int J Solids and Structures, 1996, 33:3019- 
3034. 

[4] Truesdell C, Noll W. The non-linear field theories of 
mechanics[M]. New York: Springer-Verlag, 1965. 

[5] Bardenhagen S G, Stout M G, Gray G T. Three- 
dimensional, finite deformation, viscoplastic constitutive 
models for polymeric materials[J]. Mechanics of Materials, 
1997, 25:235-253. 

[6] Lubliner T. A model of ruber vicoelasticity[J]. Mech Res 
Commun, 1985, 12:93-99. 

[7] Lion A. A physically based method to represent the 
thermo-mechanical behavior of elastomers[J]. Acta 
Mechanica, 1997, 123:1-25. 

[8] Huber N, Tsakmakis C. Finite deformation viscoelasticity 
laws[J]. Mechanics of Materials, 2000, 32:1-18. 

[9] Drozdov A D, Al-Mulla A, Gupta R K. Finite visco- 
plasticity of polycarbonate reinforced with short glass 
fibers[J]. Mechanics of Materials, 2005, 37:473- 491. 

[10] Shen L. Constitutive relations for isotropic or kinematic 
hardening at finite elastic-plastic deformations[J]. Int J 
Solids and Structures, 2006, 43:5613-5627. 

[11] Xiao H, Bruhns O T, Meyers A. Hypo-elasticity model 
based upon the logarithmic stress rate[J]. Journal of 
Elasticity, 1997, 47:61-68. 

有限变形的三维粘弹性本构模型 

沈利君, 卞忠景 

（宁波大学 教育部冲击与安全工程重点实验室, 浙江 宁波 315211） 

摘要: 遗传积分形式与弹性元件和粘壶串并联表示的微分形式可以描述高聚物小变形情况下的粘弹性特
性. 文章以这些小变形的本构模型为起点, 推出有限变形下的本构模型. 一个有限变形过程分解成一系列
微小变形子过程. 小变形子过程中, 应力的转动变化由弹性本构方程确定, 主应力的变化由弹性元件和粘
壶串并联结构的模型确定, 这样提出了一个满足客观性原理的有限变形的粘弹性本构模型. 模型材料参
数随应变率而变, 所以模型适合于从准静态到冲击载荷的较宽应变率范围. 作为应用, 计算了简单剪切有
限变形, 就建议的模型与现有的模型进行了比较, 结果表明建议的模型能够描述高聚物有限变形情况下
的粘弹性性质. 
关键词: 粘弹性; 有限变形; 客观性原理 
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