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Abstract: A boundary value problem on a circular nanometer hole in an elastic plane loaded at the

boundary and infinity is solved. It is assumed that complementary surface stresses are acting at the

boundary of the hole. Based on Goursat-Kolosov’s complex potentials and Muskhelishvili’s technique, the

solution of the problem is reduced to a hypersingular integral equation in an unknown surface stress. The

solution of the problem shows that, due to an existence of the surface stresses, the stress concentration at the

boundary depends on the elastic properties of a surface and bulk material, and also on the radius of the hole.
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The theory of elasticity which takes into con-
sideration the action of stresses at a surface of a body!' ™
is recently applied to the problems of nanotechnology.
The surface stresses are supposed to be responsible for
abnormal properties of nano-samples in comparison with
macro-samples of the same mamerial. In particular, the
surface stresses are directly related to the scale effect
that means the material properties of a spesimen depend

on its sizel®

. Furthermore, unexpected effects not
corresponding to our traditional representations become
apparent. For example, Young’s modulus of a cylindrical
specimen increases significantly, when the cylinder
diameter becames very small'”). From these positions the
classical problem concerning an elastic plane with a
circular hole loaded at the boundary and infinity will be
considered. It is assumed that complementary surface

stresses act along the boundary of the hole.
1 Thestatement of the problem

According to the Laplace-Young law!"", the
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boundary conditions for the circular hole of radius a
in a plane are given as follows

s s
O 1 0o,
On— a = prr56r9+g = Pro> (1)

S . .
here o,, is the surface stress; o,,0,, and o, are

o
the classical stresses in the polar coordinates r,8, with
the center coinciding with that of the circular hole;
P., P, are the external normal and tangential loads
respectively.

The conditions at infinity are

1igriajk =S, gn;a):o, 2)
where o (j,k=1,2) are the stresses in the Cartesian
coordinates X, and X, (X =rcosé, X,=rsind), w
is a turning angle of the material particle.

141 and

The constitutive equations for the surface
volume linear elasticity in the case of plane strain are
reduced to the following

Oy =0, +QRu,+ A, —7)Ep,

05, =05 + (A +75)E0, 3)
and

O =QRuAA)Ey + A6, , O, =QRutA)s,, +A5,,

>
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O,y =2UE,,, O = Ay + ). @)
In equations (3) and (4), &,, is the surface strain;

&..&, and &, are the strains in the bulk material;

>

A, 14, are the modules of the surface elasticity, similar
to the Lamé constants A, of the bulk material; y, is

the residual surface stress under unstrained conditions.

2 Basicrdations

First, we construct a solution for the hole of unit
radius, therefore, introduce a=1 in equation (1). Then
in the complex writing, the conditions (1) take the form

o, +io, =t()+ (&), [{ =1, ®)
i065,/00,6,, =04/, P=P, +iP,y »
i is the imaginary unit.

s~
where t° =6, —

Introduce a local orthogonal system of coordinates
n, t rotated anticlockwise with respect to the system
X, X, by the angle a—-n/2 . Then following
Muskhelishvili’s technique'™, one can derive the joint
expression for the traction o, =o0,,+io, and the

displacement vector u=u, +iu, "

G(z,7)=n®(2)+ D(2) +%(z@’(z)+ ¥(z)), (6)

where G=o, for n=1 and G=-2pdu/dz for 7=
—k=—(A+3u)/ (A+u), @ ,¥ are functions holo-
morphic for r>1. A quantity with the bar denotes
complex conjugation and the prime denotes the
derivative with respect to the argument. The increment
Thus in

According to

dz is taken in the direction of the axis t.
dz =|dz|e'*, dZ=dz .
Muskhelishvili® we define function @ holomorphic

equation (6),

for r<1 by the formula
D(2)=—D(z )+ @ (z )+ ()| z|<1. ()

Using equality (7), we derive from (6) the
following equation
G(2,7)=n@(2)+ P(2) +
@D+ - DT,
lz|>1, ®)
we take the limit z— ¢ =€" in equation (8) and direct
axis n towards the center z=0. Since in this case
a=60+3n/2 and dz=-i|dz|e” , by virtue of

conditions (3) we obtain from (8)

D' ()P (§)=-t(£) - p(&), €
here @*({) are the limiting values of function @(z)
on the circumference of unit radius when |z|—>1£0.

The solution of the boundary problem (9) is given

in [8] and can be written in the form

cD(z)z—I(z)—Ip(z)+S(z),|z|¢1, (10)
where
SN 0) p(n)
1(2)=— ¢ ——=dn, | (2)=
(2) 7-7“\3277—2 7. 1,(2)= ‘36177
S(z)=c+c,/z+c,/7°, (11)

and
c=(s, +szz)/4, C, =(S,, =S,

———§ p(pdn.

-2is,)/2,

C1
27t|(1+ K) i

We impose the continuity constraint on the dis-

placements vector under passing from the volume to the

boundary
EEI;U(Z)=US(§),ICI= 1, (12)
|z]>1

where U°({) is the displacement vector of the

boundary point ¢ . From (12) follows the same for the
volume deformations &, and the deformation on the

boundary ¢,,,i.e.,

lime,, (2) = &5,(¢), [ S = 1. (13)

lzl>1

The relations (11) — (13) result in the equation for
the surface stress

000(8) =7+ Mg (), IS =1, (14)
where M =2u +A, —7,.

To obtain expression for &,, we find o, and
o, from equation (8) for dz=ire“dd and dz=
—e”dr when 7 =1 and then use two first equations
(4). This way yields the equation

2418,,({) = Re(k™({) + " (). (15)

Introducing (15) into (14) and taking into account
equations (10) and (11), we arrive at the following equation

03 =7, ~MRe(xl () + 1" () + Mk +1)-

(S(€)+5(@)~MRe(x1 () +1;(£), (16)

where M =M_/2u.

Let o, Since 0o, /00 =il0o,/
0¢ =ido!(£), the Sokhotskii-Plemelj formulas for the

_ S ~ _ ~s
=0yg> O5g =0y -
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Cauchy type integrals 1(z) and 1,(z) acquire the forms

s 4 05(6) , €6.(S)
I5(Q) =44 220

1 (ﬁ 6. () +n6; (1) 4
2mi n- 4’

=171
where the integral is understood in the sense of the
Cauchy principal value.
Introducing (17) into (16) and taking into account
. o, (M =0,07), n7'(n) =
-nt'(n), dif =—ndn, we obtain the following singular

the relations 7 =7", 47 =¢"!

integro-differential equation
2a-M(x-1))o,(H)+M(x+1)-
L 03(77)+f70§(f7)d77_
2m 5 n-¢
o (n)-o!
%Hn 557771; s(n)dn) _
2ay, + Ma(x +1)(S() +S({)) -
2MaRe(xl, (&) +1,(S)) . (18)
In (21) and (22) we denote n=mn/a,{=¢ /a
where 7,,¢, are points on the circumference of radius a.
It is clear that oy, =const if the external loads
are absence. Let $,=0,p=0 and o;,=0, . We derive
from equation (18) that surface stress o, at the

boundary of the circular hole in the unloaded plane is
. a

JO = }/s' (19)

a+M

Using the regularization formulal'’

and denoting
r=0,—-0,, we reduce equation (19) to the hypersingular

integral equation in the unknown function 7(¢),

(2a—M (i — 1))1(§)+M(K+1)

§ +<° /77)1(77)(1,7 Ma(x +1)-
i @=4)
(S($)+S(£)-2MaRe(xl, () +1;(£)),
IC=1. (20)
It is important to note that according to the cons-
truction of the equation (20), the homogeneous equation.
corresponding to the equation (20) does not have

non-trivial solution.

3 Solution for the circular hole with
free boundary

For the case of a circular hole the boundary of
which is free from the external load ( p=0), the
solution of the equation (20) has the simple form

r=d,+d,¢*+d,¢ 2, 1)
where

d,=aH,(s,,+5s,,), 2d, =aH,(s,,—s,, +2is,), (22)
and

M1+x) M(1+x)
T aM) 2 28+ MG+

The expression for the hoop stresses we derive
from equation (8) under dz =-e“dr and 7 =1

04(51) =ReBD™ () + D7 (L)), | S, =2 (23)

Taking into account (10), (11), (19), (21) and (22),
we obtain from equation (23)

s
Pl =g 0

(2-3H,)(s,, —$,,) c0s 20 —
2(2-3H,)s,, sin 26. (24)

H,)(S,, +5,,)+

This formula coincides with the solution of Tian

[3]

and Rajapakse"” obtained by another way.

Particular cases
(1) Equibiaxial tension/compression S;;=S,,=p,
S, =0,
2 M1+ «)
o, = = +2p. 25
whea =~ a+M 2(a+|v|)p P (25)

(2) Uniaxial tension (the Kirsch problem) s, = p,,

S, =5,=0,

Yo - M(1+x)
a+M 4(@a+M)
IM(1+x)
2a+M @3 +k)
=0,8, =5, =0,

)p]_

G0 |r:a =

2- ) p, cos26. (26)

(3) Simple shear s,,

7. 3M (1+x)
20 20. (27
arM 2 e M ey A2 @D

The equalities (25) — (27) show that the presence

G0 |r:a =

of the surface stress decreases the stress concentration if
M >0 . The residual stress y, produces the same
effect. Besides, the stress concentration depends on the

radius of the hole (scale effect). According to theoretical
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calculations for cubic metals!

and estimates produced
in [6], the parameter M = (2u,+A,—,)/(2u) in which
the residual stress p, is negligible has an order
M ~(10"°~10")m, and y, ~IN-m". In this case if
a ~ 10 nm, the first member in (25) — (27) has the order
10°N'm™?=100 MPa. So, for the values of remote loads
P, p,,q up to 100 MPa, the influence of the residual
stress y, on the stress dis- tribution at the boundary and
especially on the stress concentration is comparable with
the influence of remote loads. Furthermore, the effect of
the residual surface stress surpasses that of surface
elasticity because the rest members in (25) — (27) con-
taining parameter M are less than the first one. This

phenomenon was recently ascertained by Goldstein et al!®.
4 Conclusion

The general analytical solution of the 2D problem
on a circular nanometer hole in an elastic plane is
constructed and reduced to the hypersingular integral
equation in the surface stress. For the case of remote
loading, the solution of this equation is obtained in a
closed form. The effect of the surface stress and residual
surface stress on the stress concentration is analyzed for

the simplest kinds of loading.
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