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Surface Effects and Problems of Nanomechanics 
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Abstract: A boundary value problem on a circular nanometer hole in an elastic plane loaded at the 
boundary and infinity is solved. It is assumed that complementary surface stresses are acting at the 
boundary of the hole. Based on Goursat-Kolosov’s complex potentials and Muskhelishvili’s technique, the 
solution of the problem is reduced to a hypersingular integral equation in an unknown surface stress. The 
solution of the problem shows that, due to an existence of the surface stresses, the stress concentration at the 
boundary depends on the elastic properties of a surface and bulk material, and also on the radius of the hole. 
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The theory of elasticity which takes into con- 
sideration the action of stresses at a surface of a body[1-4] 
is recently applied to the problems of nanotechnology. 
The surface stresses are supposed to be responsible for 
abnormal properties of nano-samples in comparison with 
macro-samples of the same mamerial. In particular, the 
surface stresses are directly related to the scale effect 
that means the material properties of a spesimen depend 
on its size[5-6]. Furthermore, unexpected effects not 
corresponding to our traditional representations become 
apparent. For example, Young’s modulus of a cylindrical 
specimen increases significantly, when the cylinder 
diameter becames very small[7]. From these positions the 
classical problem concerning an elastic plane with a 
circular hole loaded at the boundary and infinity will be 
considered. It is assumed that complementary surface 
stresses act along the boundary of the hole. 

1 The statement of the problem 

According to the Laplace-Young law[1,4], the 

boundary conditions for the circular hole of radius a  
in a plane are given as follows  
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here s
θθσ  is the surface stress; ,rr rθσ σ  and θθσ  are 

the classical stresses in the polar coordinates ,r θ , with 
the center coinciding with that of the circular hole; 

,rrp rp θ  are the external normal and tangential loads 
respectively. 

The conditions at infinity are 
lim , lim 0,jk jkr r

sσ ω
→∞ →∞

= =  (2) 

where ( , 1,2)jk j kσ =  are the stresses in the Cartesian 
coordinates 1x  and 2x  ( 1 2cos , sinx r x rθ θ= = ), ω  
is a turning angle of the material particle. 

The constitutive equations for the surface[1,4] and 
volume linear elasticity in the case of plane strain are 
reduced to the following 

0 (2 ) ,s s s
s s sθθ θθσ σ μ λ γ ε= + + −  

33 0 ( ) ,s s s
s s θθσ σ λ γ ε= + +  (3) 

and 
(2 ) , (2 ) ,rr rr rrθθ θθ θθσ μ λ ε λε σ μ λ ε λε= + + = + +  

                                                 

Received date: 2011−10−30.  JOURNAL OF NINGBO UNIVERSITY ( NSEE ): http://3xb.nbu.edu.cn 
Foundation items: Supported by the National Natural Science Foundation of China (11032001) and by Russian Foundation for Basic Research (11-01-91217).
The first author: GREKOV M (1946−), doctor/professor, research domain: mechanics of surface and near surface defects. E-mail: magrekov@mail.ru 
Corresponding author: MOROZOV N (1932−), doctor/professor, research domain: fracture mechanics and nanomechanics.  

E-mail:Morozov@nm1016.spb.edu 



 
第 1期 GREKOV M, et al: Surface Effects and Problems of Nanomechanics 61  

 

332 , ( ).r r rrθ θ θθσ με σ λ ε ε= = +  (4) 

In equations (3) and (4), s
θθε  is the surface strain; 

,rr rθε ε  and θθε  are the strains in the bulk material; 
,s sλ μ  are the modules of the surface elasticity, similar 

to the Lamé constants ,λ μ  of the bulk material; sγ  is 
the residual surface stress under unstrained conditions. 

2 Basic relations 

First, we construct a solution for the hole of unit 
radius, therefore, introduce 1a =  in equation (1). Then 
in the complex writing, the conditions (1) take the form 

( ) ( ), | | 1,s
rr ri t pθσ σ ζ ζ ζ+ = + =  (5) 

where / , ,s s s s s
rr rt i a p p ipθθ θθ θθ θθ θσ σ θ σ σ= − ∂ ∂ = / = + , 

i  is the imaginary unit. 
Introduce a local orthogonal system of coordinates 

,n t  rotated anticlockwise with respect to the system 

1 2,x x  by the angle 2α − π / . Then following 
Muskhelishvili’s technique[8], one can derive the joint 
expression for the traction n nn ntiσ σ σ= +  and the 
displacement vector 1 2u u iu= + [9]. 

d( ) ( ) ( ) ( ( ) ( )),
d
zG z z z z z z z
z

ηΦ Φ Φ Ψ′, = + + +  (6) 

where nG σ=  for 1η =  and 2 d dG u zμ=− /  for η =  
( 3 ) / ( ),κ λ μ λ μ− = − + + Φ , Ψ  are functions holo- 

morphic for 1r > . A quantity with the bar denotes 
complex conjugation and the prime denotes the 
derivative with respect to the argument. The increment 
dz  is taken in the direction of the axis t . Thus in 
equation (6), d | d | , d diz z e z zα= = . According to 
Muskhelishvili[8] we define function Φ  holomorphic 
for 1r <  by the formula 

1 21 1 1( ) ( ) ( ) ( ), | | 1.'z z z zz z zΦ Φ Φ Ψ− −− − −=− + + <  (7) 

Using equality (7), we derive from (6) the 
following equation 

( ) ( ) ( )G z z z zηΦ Φ, = + +  

2

d 1 1 1( ( ( ) ( )) ( ) ( )),
d
z z z z
z z zz

Φ Φ Φ′+ + −   

| | 1,z >  (8) 
we take the limit iz e θζ→ =  in equation (8) and direct 
axis n  towards the center 0z = . Since in this case 

3 2α θ= + π /  and d | d | iz i z e θ= − , by virtue of 

conditions (3) we obtain from (8)  
( ) ( ) ( ) ( ),st pΦ ζ Φ ζ ζ ζ+ −− = − −  (9) 

here ( )Φ ζ±  are the limiting values of function ( )zΦ  
on the circumference of unit radius when | | 1 0z → ± . 

The solution of the boundary problem (9) is given 
in [8] and can be written in the form 

( ) ( ) ( ) ( ), | | 1,pz I z I z S z zΦ = − − + ≠  (10) 
where 
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We impose the continuity constraint on the dis- 
placements vector under passing from the volume to the 
boundary  

| | 1

lim ( ) ( ), | | 1,s

z
z

u z u
ζ

ζ ζ
→
>

= =  (12) 

where ( )su ζ  is the displacement vector of the 
boundary point ζ . From (12) follows the same for the 
volume deformations θθε  and the deformation on the 
boundary s

θθε , i.e.,  

| | 1

lim ( ) ( ), | | 1.s

z
z

zθθ θθζ
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→
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= =  (13) 

The relations (11) – (13) result in the equation for 
the surface stress  

( ) ( ), | | 1,s
s sMθθ θθσ ζ γ ε ζ ζ= + =  (14) 

where 2s s s sM μ λ γ= + − . 
To obtain expression for ,θθε  we find rrσ  and 

θθσ  from equation (8) for d diz ire θ θ=  and dz =  
die rθ−  when 1η =  and then use two first equations 

(4). This way yields the equation 
2 ( ) Re( ( ) ( )).θθμε ζ κΦ ζ Φ ζ− += +  (15) 

Introducing (15) into (14) and taking into account 
equations (10) and (11), we arrive at the following equation 

Re( ( ) ( )) ( 1)s
s M I I Mθθσ γ κ ζ ζ κ− += − + + + ⋅  

( ( ) ( )) Re( ( ) ( )),p pS S M I Iζ ζ κ ζ ζ− ++ − +  (16) 

where / 2 .sM M μ=   

Let ,s s
s sθθ θθσ σ σ σ= = . Since s siσ θ ζ σ∂ / ∂ = ∂ /  

( )siζ ζσ ζ′∂ = , the Sokhotskii-Plemelj formulas for the 
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Cauchy type integrals ( )I z  and ( )pI z  acquire the forms 
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where the integral is understood in the sense of the 
Cauchy principal value.  

Introducing (17) into (16) and taking into account 
the relations 1 1, , ( ) ( ),s sη η ζ ζ σ η σ η− −= = = ( )ητ η′ =  

2( ), d d ,ητ η η η η−′− = −  we obtain the following singular 
integro-differential equation  
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2 Re( ( ) ( ))p pMa I Iκ ζ ζ− ++ . (18) 

In (21) and (22) we denote 1 1,a aη η ζ ζ= / = /  
where 1 1,η ζ  are points on the circumference of radius a . 

It is clear that consts
θθσ =  if the external loads 

are absence. Let 0, 0jks p= =  and 0
s s
θθσ σ= . We derive 

from equation (18) that surface stress 0
sσ  at the 

boundary of the circular hole in the unloaded plane is 

0 .s
s

a
a M

σ γ=
+

 (19) 

Using the regularization formula[10] and denoting 

0 ,s
sτ σ σ= −  we reduce equation (19) to the hypersingular 

integral equation in the unknown function ( )τ ζ , 

2
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( ( ) ( )) 2 Re( ( ) ( )),p pS S Ma I Iζ ζ κ ζ ζ− ++ − +  
| | 1ζ = . (20) 

It is important to note that according to the cons- 
truction of the equation (20), the homogeneous equation. 
corresponding to the equation (20) does not have 
non-trivial solution. 

3 Solution for the circular hole with 
free boundary 

For the case of a circular hole the boundary of 
which is free from the external load ( 0p = ), the 
solution of the equation (20) has the simple form 

2 2
0 2 2 ,d d dτ ζ ζ −= + +  (21) 

where 
0 1 11 22 2 2 22 11 12( ), 2 ( 2 ),d aH s s d aH s s is= + = − +  (22) 

and 

1 2
(1 ) (1 ), .
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M MH H

a M a M
κ κ

κ
+ +

= =
+ + +

 

The expression for the hoop stresses we derive 
from equation (8) under d diz e rθ= −  and 1η =  

1 1( ) Re(3 ( ) ( )), | | .aθθσ ζ Φ ζ Φ ζ ζ− += + =  (23) 

Taking into account (10), (11), (19), (21) and (22), 
we obtain from equation (23) 

1 11 22

2 22 11

(1 )( )

(2 3 )( )cos2

s
r a

H s s
a M
H s s

θθ
γσ

θ

=
= − + − + +

+
− − −

 

2 122(2 3 ) sin 2 .H s θ−  (24) 

This formula coincides with the solution of Tian 
and Rajapakse[5] obtained by another way. 

Particular cases 
(1) Equibiaxial tension/compression 11 22 ,s s p= =  

12 0s = , 
(1 ) 2 .

2( )
s

r a

M p p
a M a Mθθ
γ κσ

=

+
= − − +

+ +
 (25) 

(2) Uniaxial tension (the Kirsch problem) 11 1,s p=  

22 12 0,s s= =  

1
(1 )(1 )

4( )
s

r a

M p
a M a Mθθ
γ κσ

=

+
= − + − −

+ +
 

1
3 (1 )(2 ) cos2 .

2 (3 )
M p

a M
κ θ
κ

+
−

+ +
 (26) 

(3) Simple shear 12 11 22, 0,s q s s= = =  

3 (1 )2(2 ) sin 2 .
2 (3 )

s
r a

M q
a M a Mθθ
γ κσ θ

κ=

+
=− − −

+ + +
 (27) 

The equalities (25) – (27) show that the presence 
of the surface stress decreases the stress concentration if 

0M > . The residual stress sγ  produces the same 
effect. Besides, the stress concentration depends on the 
radius of the hole (scale effect). According to theoretical 
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calculations for cubic metals[11] and estimates produced 
in [6], the parameter M = (2 ) / (2 )s s sμ λ γ μ+ −  in which 
the residual stress sγ  is negligible has an order 

10 9(10 10 )M − −−∼ m, and 1sγ ∼ N·m-1. In this case if 
10a ∼ nm, the first member in (25) – (27) has the order 

108 N·m-2 =100 MPa. So, for the values of remote loads 

1, ,p p q  up to 100 MPa, the influence of the residual 
stress sγ  on the stress dis- tribution at the boundary and 
especially on the stress concentration is comparable with 
the influence of remote loads. Furthermore, the effect of 
the residual surface stress surpasses that of surface 
elasticity because the rest members in (25) – (27) con- 
taining parameter M  are less than the first one. This 
phenomenon was recently ascertained by Goldstein et al[6]. 

4 Conclusion 

The general analytical solution of the 2D problem 
on a circular nanometer hole in an elastic plane is 
constructed and reduced to the hypersingular integral 
equation in the surface stress. For the case of remote 
loading, the solution of this equation is obtained in a 
closed form. The effect of the surface stress and residual 
surface stress on the stress concentration is analyzed for 
the simplest kinds of loading. 
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纳米力学中的表面效应及相关问题 

GREKOV M, MOROZOV N* 

（圣彼得堡国立大学, 俄罗斯 圣彼得堡 198504） 

摘要: 对载荷作用在边界和无穷远处的含有纳米圆孔弹性平面薄板问题进行了分析, 给出了其边界值问
题的解. 假设全表面应力作用于孔的边界上, 基于古沙－科洛索夫复势和Muskhelishvili’s技术, 问题可简
化为一个未知表面应力的超奇异积分方程的解. 结果表明: 由于表面应力存在, 边界上的应力集中取决于
材料表面和体内的弹性性质, 也与孔的半径相关. 
关键词: 纳米圆孔; 表面应力; 超奇异积分方程; 应力集中 
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