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Abstract: Dynamic deformation and fracture process of rock mass are investigated from the perspective of 
structural hierarchy. The relationship between spatial scales of deformation and fracture with strain rate is 
explored in the framework of relaxation model. The velocity of crack propagation in dependence on loading 
intensity is discussed, and the hierarchic nature of deformation and fracture are examined. At last the 
fracture criteria are discussed from the aspects concerning structural hierarchy of rock mass. The 
investigation shows that dynamic deformation and fracture process of rock mass possess hierarchic nature 
which depends on the spatial and temporal characteristics of external loading, structural hierarchy of rock 
mass and finiteness of the velocity of the fracture process. The temporal criterion and limit strain criterion 
may serve as fracture criteria adequately well. 
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1 Introduction 

Generally in continuum mechanics solid is 
represented as ideal continuum medium whose 
deformation under external forces is completely 
reversible if the internal stresses in solid don’t exceed 
their limit values characterizing the strength of solid. 

But real materials have complex internal structure 
which has decisive effect on mechanical behavior of 
materials. For rock mass an important peculiarity of 
such discreteness is the similarity of the internal 
structure in a wide range of sizes. Investigation showed 
that [1], a fundamental canonical series for the sizes iΔ  

of geo-blocks exists: 

0( 2) ,i
i

−Δ = Δ  (1) 

where 0 2.5Δ = × 106 m is the radius of Earth’s core; i  
is positive integers.  

According to the investigation in [2], the ratio of 
openings of cracks iδ  to linear size of blocks iΔ  
separated by these cracks at i-th scale level is stable, and 
can be described by the next relation that has a normal 
statistical distribution 

2( ) 10 ,i

i

δμ δ −
Δ = = Θ

Δ
 (2) 

where Θ is a coefficient changing in the interval 1/2 – 
2, and parameter μΔ is termed as “geo-mechanical 
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invariant” in [2].  
The structural hierarchy of rocks specifies the 

hierarchy of deformation and fracture processes. Slow 
processes, such as energy storage between earthquakes 
at the geotectonic levels as well as the diffusion stress 
waves, tectonic solitary waves with different periods, 
rotary waves, seismicity caused by the oil and gas 
production, and the construction of petroleum storage 
reservoirs etc., commonly occur in the hierarchical 
levels with geo-blocks of great sizes[3-4]. 

The fast processes, for instance, the deform- 
ation and fracture of materials under shock loading[5], are 
related to the mesoscopic or microscopic structural levels. 
The interim processes, including micro-earthquakes, 
rock-bursts, and so on, occur at levels between the 
tectonic and meso-microscopic levels[6]. 

It has been from the conceptions of the structural 
hierarchy that scientists have been studying the laws of 
deformation and fracture of geo-medium at different 
structural levels since the 1970’s. For example, the 
relations between the sizes of geo-blocks and the 
fracture times were examined in [3,7]. The comparisons 
between the stiffness of inter-block layers and the 
thickness of geo-block layers were analyzed in [8-9]. 
The relations between the structural hierarchy, the 
viscosity, and the strength of geo-blocks were 
investigated in [10-11]. However, the hierarchic nature 
of deformation and fracture of rock mass are still not 
fully understood, the essence of the relations between 
spatial and temporal scales is not revealed completely, 
the deformation and fracture processes of rock mass 
from the viewpoint of structural hierarchy is not fully 
clarified. The present paper is devoted to the 
investigation of the above mentioned problems in order 
to reveal the hierarchic nature of deformation and 
fracture of rock mass. 

2 The relationship between temporal 
and spatial scales of deformation 
and fracture of rock mass 

The internal structure has decisive impact on 

mechanical behavior of rock mass. If the strength of 
crystals with ideal regular lattices is their theoretical 
strength, then the strength of real materials is about 2 – 
3 orders lower than their theoretical strength. Obviously, 
the complex hierarchic internal structure of real 
materials will causes the stress concentration and strain 
localization which are responsible for lowering of real 
material strength. Accordingly the stresses in hetero- 
geneous solids may be looked as being composed of two 
components[6]: elastic stresses induced by the reversible 
volume and shear deformations, and the local inelastic 
stresses in heterogeneities which are responsible for the 
irreversible deformations. The elastic stresses are related 
to the reversible deformations linearly. As to the residual 
stresses (inelastic stresses), they arise at definite strain 
rate, and relax with time. The evolution equation for the 
residual stress deviator l

ijsΔ  in heterogeneities with 
characteristic linear size l may be described by Maxwell 
model  

2d
2 ,

d

l l
ij ij

s ij

s s
c e v

t l
ρ

Δ Δ
= −  (3) 

where l
ijsΔ  is the residual stress deviator components 

in heterogeneities with characteristic scale l ; ije  is the 
residual strain rate deviator components; ρ  is the 
density of the medium; v  is the relaxation velocity; 

sc is the elastic shear wave propagation velocity. Here 
we suppose that all residual stress deviator components 
relax with the same relaxation time. 

The main feature of this model is that, the 
relaxation rate of the residual deviator stresses in 
heterogeneities is proportional to the magnitude of the 
residual stresses, and inversely proportional to the size 
of the heterogeneities.  

The solution of equation (3) has the following 
form:  

2 /2 (1 ),l vt l
ij s ij

ls c e e
v

ρ −Δ = −  (4) 

with the time the residual deviator stresses approach 
their stationary values 

22 .l
ij s ij

ls c e
v

ρΔ =  (5) 
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Substituting equation (5) into the expression 

IσΔ = 3 / 2,l l
ij ijs sΔ Δ  for intensity of residual stress 

deviator, we obtain 
23 ,I s ij

lc e
v

σ ρΔ =   (6) 

where 2 / 3,ij ije eε =  is the residual strain rate 
intensity. 

It can be seen from equations (5) and (6) that at 
given strain rate the greater the size of the 
heterogeneities is, the greater the residual stresses are. If 
the size of the body is infinite, then we can always find 
large enough heterogeneities that their residual stresses 
are large enough to cause the fracture of the body. If we 
denote the limit residual stress causing fracture of the 
body as σ ∗ , then we can determine the minimal size of 
heterogeneities corresponding to the limit residual stress 
σ ∗ : 

2 .
3 s

vl
c

σ
ρ ε

∗

=  (7) 

In this way, at constant strain rate among the 
parameters of solid a parameter with dimension of 
length arises.  

It can be seen from equation (7) that, for any body 
we can find one strain rate that does not make the body 
fractured. In the frame of this model such a behavior of 
solid corresponds to creep. 

3 Hierarchic natures of deformation 
and fracture of rock mass 

Now let us analyze equation (7). For plastically 
non-compressible rock mass Poisson’s ratio 0,μ =  and 
Young’s elastic modulus is 2(1 ) 2(1 0.5)E Gμ= + = + ⋅  

2 23 .s sc cρ ρ=  Therefore in one-dimensional case the 
term 2/ (3 )scσ ρ∗  on the right of equation (7) represents 
the magnitude ε ∗ of deformation corresponding to 
strength limit σ ∗ , and the term 2/ (3 )scσ ρ ε∗  denotes 
the time for strain to reach deformation ε ∗  at constant 
strain rate ε : 2/ (3 ) /scσ ρ ε ε ε τ∗ ∗ ∗= = . v  may be 
looked at as the propagation velocity of crack. Therefore 
equation (7) may be rewritten as  

2 ,
3 s

vl v v
c

σ ε τ
ρ ε ε

∗ ∗
∗= =＝  (8) 

which denotes the propagation distance of crack at the 
moment of failure. 

Propagation velocity v  of crack depends on load- 
ing conditions. Experimental observations of fracture 
propagation[12-13] indicate that crack may grow for 
energy lower than the critical limit of fracture. At micro- 
scale, the tensile failure due to the sub-critical pro- 
pagation of cracks may represent the main micro- 
mechanism of creep at the macro-scale. The dependence 
of fracture propagation rate on the stress intensity factor 
in mode I may be approximated by tri-modal behavior, 
which is shown in Fig. 1.  

 

Fig. 1  The dependence of crack propagation velocity on 

stress intensity factor 

In region I, the rate of stress corrosion reaction 
controls the velocity of crack growth. Region II is 
mainly determined by the rate of transport of reactive 
species to crack tips. In region III, the velocity of crack 
growth increases drastically up to failure and is 
relatively independent of the chemical environment and 
is controlled by mechanical rupture.  

Considering crack growth as a succession of water 
vapor enhanced rupture of small material element 
immediately adjacent to the crack tips, Salganik et al[14] 
showed that the three regimes of crack propagation can 
be predicted, respectively, by three following equations: 
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where T is the absolute temperature; 0τ  is the typical 
period of atomic fluctuations; 0v is the mean velocity of 
diffusion; 0ϕ  is the relative concentration of water in 
the gas next to the crack tips; moln is the number of 
molecules of water required for the water assisted 
rupture of a single bridging bonding; md is the length of 
the material structure; 0b is the bridging bond length; 

AN is the Avogadro number; m  is the molecular mass 
of water; p is the partial pressure of water vapor; 01U ′  
and 03U ′ are the zero stress activation energy in regions I 
and III, respectively; 1Q′ and 3Q′  are stress sensitivity 
factors in regions I and III, respectively. 

Experiments show that the limit crack growth 
velocity is about 0.4 of Reyleigh wave speed RC [15]. 
Recently the relationship between limit crack growth 
velocity cv  and the mechanical characteristics of 
material has been obtained theoretically in [16] 

2( ) ((1 ) / (4(1 )(( 3 /2 7 /8)cv R γ γ γ λ= − + − + ⋅  
2 2 1/2ln(2 / ) 3 /8 3/ 32 /(8 ))))R a a Rγ− + + ⋅  

1/2( / ) ,E ρ  (12) 

where R is the size of region of the material involved in 
the crack propagation; γ is the Poisson’s ratio; E is 
Young’s elastic modulus; ρ is the material density; 
a is the half-length of the crack. For example, for 

2.6R a= , 0.25γ = , equation (21) gives 0.38 /cv E ρ= . 
Therefore there are two characteristic crack 

propagation velocities: the crack growth velocity 
corresponding to plateau II subv  and limit crack growth 
velocity Cv . 

According to equation (2), at every structural level 
the thickness of the weakened surfaces is proportional to 
the characteristic size of the elements at given structural 
level. It is natural to assume that the smaller the 
thickness of the structural surfaces is, i.e. the smaller the 
character size of this structural level is, the higher the 
mechanical characteristics of rock mass at this level are. 

The magnitude of strain rates is related to the stress 
wave profile. The rise phase of stress wave is the main 

phase that induces dynamic response of materials. The 
shorter the rise time rt  is, and the greater the stress 
magnitude is, the higher is the strain rate. If we denote 
the wave propagation velocity in material as c , the more 
the strain rate is, the less is the region rct covered by 
the rise phase of the wave, and the higher is the strength 
of material.   

From other hand, in the region rct covered by the 
rise phase of stress wave, because of the finiteness of the 
wave propagation velocity Cv v≤ , for 0-th level 
elements with maximum size 0D ~ rct , the strength of 
structural surface of material is 0Nσ , the entire time for 
structural surface to open is 2

0 0 0/ ( ) /Nt c D vσ ερ= + . If 
the growth of loading is so faster that before the 
complete failure of 0-th level elements the magnitude of 
stress reaches the strength of the 1-th level element with 
size 1 0D D< , in this way the inter-element structural 
surfaces of 1-th level elements start to crack. The time 
necessary for 1-th level inter- element surfaces to failure 
completely is 2

1 1 1/ ( ) /Nt c D vσ ερ= + . 
If before the complete failure of 0-th and 1-th level 

elements loading continues to grow, then the initiation 
of cracking of inter-element surfaces of the next smaller 
scale level elements is activated and so on. Thus the 
strength of inter-element structural surfaces of the least 
scale elements at moment of macroscopic failure is the 
dynamic strength of material.  

In this way we can clearly see the intrinsic 
relationship between size and strain rate effects. The 
fracture time is the minimum of the quantity /Niσ  

2( ) /ic D vερ +  for all involved structural levels, i.e. 

2min( / ).Ni
frac iD v

c
στ
ερ

= +  (13) 

It is clear that the term 2/ ( )Ni cσ ερ  in the 
right-hand side of equation (13) is related to the elastic 
behavior of material, and the second term /iD v  
represents the relaxation time at i-th scale level. 

4 On fracture criteria of rock mass 

In static loading conditions or at low strain rates 
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cracks at the largest scale level have time to develop, 
and the strength of the structural surfaces at this level 
controls the static strength 0cσ of rock mass. Therefore 
“force” criteria are good enough for the description of 
the fracture. At high strain rates the situation becomes 
much complicated. If the strain rates and the maximum 
attained stresses are high enough, then before the 
fracture of rock mass at the largest scale level 
deformation and fracture processes at smaller scale 
levels will be activated. Thus “force” criteria are not 
enough for describing the deformation and fracture, they 
are only necessary conditions for fracture of rock mass. 
In order that fracture takes place at i-th scale level the 
loading time must exceeds the time /iD v  necessary 
for the cracks to propagate through out the elements at 
this level. From this viewpoint the concept of incubation 
time for fracture proposed by Morozov N F and Petrov 
Y V[17] is appropriate. Obviously, incubation time i

inct  
for fracture at i-th scale level is /i

inc it D v= , the product 
i i
i inctσ  of the strength ciσ  and incubation time inct  at 

i-th scale level constitutes the critical value of impulse 
for the fracture of rock mass.   

Nikiforovsky-Shemyakin’s impulse criterion[18] 
supposes that, fracture occurs when the integral of local 
stress with time, i.e. when the local stress ( )tσ impulse 
exceeds one critical value Jc, i.e. 

0
( )d .

t

ct t Jσ∗∫ ≥  (14) 

According the concept of incubation time proposed 
by Morozov N F and Petrov Y V, equation (14) should 
be rewritten as  

00
( )d .

t

c inct t tσ σ∗

∫ ≥  (15) 

In solids the next relation holds 
,Dvσ ρ=  (16) 

where ρ  is the density of materials; v  is the velocity 
of particle of materials; and D is the velocity of shock 
wave. Hence for pulse criterion (14), we have 

0 0
( )d d ,

t t

ct t Dv t Du Jσ ρ ρ∗ ∗= = =∫ ∫  (17) 

where u is particle displacement. 
Formula (17) shows that, when macroscopic 

displacement of particles reaches critical value, fracture 
occurs. 

Displacement is the macroscopic measure of 
deformation of materials. If the characteristic dimension 
covered by shock wave is shockL , then displacement can 
be expressed by deformation ε  as 

.shocku L ε=  (18) 
Therefore formula (17) becomes 

0
( )d ,

t

shock ct t DL Jσ ρ ε∗ = =∫  (19) 

i.e. when deformation of solids reaches critical value, 
fracture occurs. 

But with the increase of strain rate more scale 
levels are involved into deformation and fracture 
processes, the critical strain magnitude should increase. 
For example if shock wave covers the j-th scale level 
element, and if only the structural surfaces at this level 
are fractured, then the limit strain at j-th scale level 
should be close to “geo-mechanical invariant”   

.jcrε μΔ≈  (20) 
Experimental data conform this conclusion[6]. 
If the next smaller scale level, i.e. (j-1)-th level, is 

also activated, and 1 / 1j j α−Δ Δ = < , then the limit 
strain will be  

(1 ) .j j
jcr

j

μ αμ
ε α μΔ Δ

Δ

Δ + Δ
≈ = +

Δ
 (21) 

If the next two smaller scale levels: (j-1)-th and 
(j-2)-th levels are activated, then the limit strain will be  

2(1 ) ,jcrε α α μΔ≈ + +  (22) 
and so on.  

Experiments show that the limit failure strain really 
increases with the strain rate[19]. The rock-like material, 
concrete, also shows the same strain rate sensitivity of 
limit failure strain[20]. 

With more and more scale levels being activated, 
the limit strain will approach to the following limit 

.
1jcr
με
α
Δ→
−

 (23) 

For example, if 1 / 2α = , then 3.4jcrε μΔ≈ , 
which agrees with the experimental data in [19-20]. 

The relative stable nature of limit failure strain 
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allows us to use limit strain criterion as an alternative 
fracture criterion for rock mass together with temporal 
fracture criteria. The essence of temporal criteria and 
limit strain criterion is that the material must has enough 
time to develop deformation before limit failure strain is 
attained. 

5 Conclusions 

Rock mass has complex internal structural 
hierarchy, at every scale level mechanical properties of 
materials are different. Such structural hierarchy 
specifies the hierarchic nature of deformation and 
fracture of rock mass. According to the temporal and 
spatial properties of loading different scale levels are 
activated in the processes of deformation and fracture of 
rock mass. In the present paper the relationship between 
spatial and temporal scales of deformation and fracture 
is studied from the viewpoint of structural hierarchy. It 
is shown that the relationship between spatial scales and 
temporal scales of deformation and fracture of rock 
mass is determined by the structural hierarchy of rock 
mass and the limitness of crack propagation. The 
essence of strain rate effect of strength is that because of 
the limitness of crack propagation velocity the increase 
of loading activates the deformation and fracture 
processes at smaller scale levels before the macro- 
fracture of the body, the dynamic strength of materials is 
the structural surface strength of the smallest activated 
structural elements before the macro- fracture of the 
sample. It is also shown that temporal criteria and limit 
strain criterion may serve as favorable fracture criteria 
for rock mass, The essence of temporal criteria and limit 
strain criterion is that the material must has enough time 
to develop deformation before limit failure strain is 
attained. 
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岩体动力变形破坏的层次特性  

戚承志 1, 王明洋 2, 陈剑杰 2, 钱七虎 2  

（1.北京建筑工程学院 北京市工程结构与新材料工程研究中心, 北京 100044;  

2.解放军理工大学 工程兵工程学院, 江苏 南京 210007） 

摘要: 岩体具有复杂的内部结构, 内部结构对于岩土的力学性质具有决定性的影响. 文章从岩体结构层次
的角度研究了岩体的动力变形与破坏过程, 在松弛模型的框架内研究了变形破坏的空间尺度与应变率之
间的关系. 讨论了裂纹传播速度与荷载强度之间的关系, 研究了岩体变形破坏的层次特性. 最后从岩体结
构层次角度研究了岩体的破坏准则. 研究表明: 岩体的动力变形与破坏具有层次特性, 这一层次特性依赖
于外载的空间与时间特性、岩体的结构层次和岩体变形与破坏过程速度的有限性. 时间准则与极限变形准
则可以较好地描述岩体的动力破坏.  
关键词: 内部结构层次; 岩体; 动力变形与破坏; 层次特性 
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