SCHOLARWORKS @UMassAmherst

Prochlorococcus and *Synechococcus* (a process we refer to as early genome reduction). A maximum likelihood approach was then used to

FAO

About

Home

Home > Dissertations > 352	< <u>Previous</u>	<u>Next</u> >	
			Enter search terms:
			in this series
Dissertations			Advanced Search
			Notify me via email or RSS
New Genomic Approaches Reveal the		Download	Browse
Process of Genome Reduction in Prochlorococcus		SHARE	Collections
			Disciplines
Zhiyi Sun, University of Massachusetts - Amherst	-		Authors
Date of Award 2-2011			Author Corner
Document Type			Author FAQ
Open Access Dissertation			
			UMASS
Doctor of Philosophy (PhD)			AMHERST
Degree Program Organismic and Evolutionary Biology			
First Advisor Jeffrey L. Blanchard			
Second Advisor			
Adam Porter			
Third Advisor Benjamin B. Normark			
Keywords			
comparative genomics, genome reduction, marine cyanobacteria, mutation rate, natural selection, Prochlorococcus			
Subject Categories Biology Ecology and Evolutionary Biology			
Abstract			
Small bacterial genomes are believed to be evolutionarily derived from larger genomes through massive loss of genes and are usually			
associated with symbiotic or pathogenic lifestyles. It is therefore intriguing that a similar phenomenon of genome reduction has been			
reported within a group of free-living phototrophic marine			
cyanobacteria <i>Prochlorococcus</i> . Here I have investigated the roles of natural selection and mutation rate in the process of Prochlorococcus			
genome size reduction. Using a data set of complete cyanobacterial			
genomes including 12 <i>Prochlorococcus</i> and a sister group of 5 marine			
<i>Synechococcus</i> , I first reconstructed the steps leading to <i>Prochlorococcus</i> genome reduction in a phylogenetic context. The			
result reveals that small genome sizes within <i>Prochlorococcus</i> were			
largely determined by massive gene loss shortly after the split of			

estimate changes in both selection effect and mutation rate in the evolutionary history of *Prochlorococcus*. I also examined the effect of selection and functional importance of a subset of ancestor-derived genes those are lost in *Prochlorococcus* but are still retained in the genomes of its sister *Synechococcus* group. It appears that purifying selection was strongest when a large number of small effect genes were deleted from nearly all functional categories. And during this period, mutation rate also accelerated. Based on these results, I propose that shortly after *Prochlorococcus* diverged from its common ancestor with marine *Synechococcus*, its population size increased quickly and thus the efficacy of selection became very high. Due to limited nutrients and relatively constant environment, selection favored a streamlined genome for maximum economies in material and energy, causing subsequent reduction in genome size and possibly also contributing to the observed higher mutation rate.

Recommended Citation

Sun, Zhiyi, "New Genomic Approaches Reveal the Process of Genome Reduction in Prochlorococcus" (2011). *Dissertations*. Paper 352. http://scholarworks.umass.edu/open_access_dissertations/352

 This page is sponsored by the <u>University Libraries.</u>

 © 2009 <u>University of Massachusetts Amherst</u>

 • <u>Site Policies</u>

