

Agricultural Journals

Czech Journal of GENETICS AND PLANT BREEDING

home page about us contact

	us
Table of Contents	
IN PRESS	
CJGPB 2014	
CJGPB 2013	
CJGPB 2012	
CJGPB 2011	
CJGPB 2010	
CJGPB 2009	
CJGPB 2008	
CJGPB 2007	
CJGPB 2006	
CJGPB 2005	
CJGPB 2004	
CJGPB 2003	
CJGPB 2002	
CJGPB	
Home	

Editorial Board

For Authors

- Authors
 Declaration
- Instruction to Authors
- Guide for Authors
- Copyright
 Statement
- Submission

For Reviewers

- Guide for Reviewers
- Reviewers
 Login

Subscription

Czech J. Genet. Plant Breed.

X., Liu K., Wang Q., Zhang C., Liu C., Zhu W., Shan G., Chin C.K., Fang W.:

Integration and characterization of T-DNA insertion in upland cotton

Czech J. Genet. Plant Breed., 49 (2013): 51-57

Copy numbers were evaluated by realtime quantitative PCR, and 149 junctions of T-DNA were isolated by thermal asymmetric interlaced PCR from 92 independent transgenic cotton lines transformed by *Agrobacterium tumefaciens* strain LBA4404. Real-time quantitative PCR results showed that 46% had integration of one or two T-DNA copies, 54% had three or more copies. Among 63 amplified products at LB junctions, 51% showed co-transformation of the vector backbone, 30% retained a portion of LB ranging from 3 to 23 bp, and 19% showed deletions ranging from 1 to 148 bp from the LB inner end. In contrast, all of the cleavage sites were located in the inner region of RB. The distribution of T-DNA insertions in upland cotton genome included coding sequences, transposons, plastid-derived sequences and microsatellites.

Keywords:

cotton (*Gossypium hirsutum* L.); deletion of border; genetic transformation; transgene copy; vector integration

[fulltext]

© 2011 Czech Academy of Agricultural Sciences

XHTML11 VALID