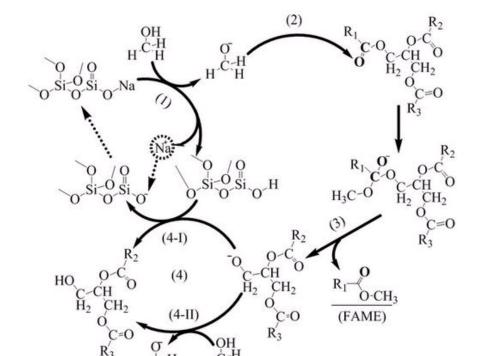
XISHUANGBANNA TROPICAL BOTANICAL GARDEN, CHINESE ACADEMY OF SCIENCES

您当前的位置: 首页 > 新闻动态 > 科研动态


硅酸钠催化大豆油制备生物柴油的机理研究

时间: 2011-09-25 来源: 生物能源研究组 浏览次数: 作者: 郭峰、方真 🖶 打印 字体: 大 中 小【关闭】

目前,已工业化的生物柴油主要由均相催化剂即液体酸、碱催化制备的。其优点是反应速度快、时间短、转 化率高、成本较低等,然而存在催化剂难以分离回收和再利用、副反应多和乳化现象,副产物甘油精制困难,后 处理复杂,后续水洗和中和产生大量的工业废水,造成环境污染等严重问题。因此,以固体酸、碱催化剂为基础 的非均相催化剂催化制备生物柴油的工艺应运而生,已成为生物柴油领域的研究热点。

天然存在的无机盐类固体碱非常值得开发,如钼酸钠、磷酸矾、碳酸盐等都被用来催化生产生物柴油。我园 生物能源组助理研究员郭峰博士在大连理工大学攻读博士学位期间,首次对硅酸钠的结构和催化行为做了详细的 研究,经简单的煅烧工艺获得了催化活性高效的固体碱。硅酸钠在煅烧后,可以耐受2.5 wt %的自由酯肪酸和 4.0 wt %的水,而且可回收和重复使用,与煅烧前相比,均得到了较大的改善。煅烧硅酸钠原料廉价,对油脂质 量要求低,能够减少废水排放,失活催化剂可用作建筑原料,因此具有较大的工业应用价值。相关文章发表在 《Fuel Processing Technology》[1]上。

在此基础上,郭峰博士进一步应用FT-IR等表征手段研究了煅烧硅酸钠在甲醇中的价键变化情况,发现硅酸 钠的Si-O-Na催化基团能够与底物甲醇发生质子交换,从而产生催化酯交换反应的高活性基团CH3O-。为了证实 该机理,采用基于Gaussion的B3-LYP功能和6-31+G(d,p)基组的密度功能理论(DFT)模拟计算酯交换反应 过程中的价键参数,推导官能基团供给和接受质子的能力,结果很好地支持了这一质子交换催化机理。在方真研 究员的进一步指导下,对该部分工作在理论上做了理顺和补充,详细阐述了煅烧硅酸钠催化酯交换反应的机理和 煅烧硅酸钠的耐水机理。近日,文章被国际期刊《Fuel》[2]接收。此外,该机理研究将对硅酸钠催化副产甘油制 备乳酸的机理研究提供理论支持。

科研成果

园林园艺

科学传播

研究队伍

研究生站

机构设置

国际交流

图书情报

数据资源

陶诞辰100周年

西园概况

西园介绍 西园历史 党委和纪委

领导集体 统计数据 学术委员会

学位委员会

西园风采

科研部门

热带森林生态学重点实验室 资源植物研究中心 研究团组

支撑系统

公共技术服务中心 生物地球化学实验室 地理信息系统 (GIS) 实验室 热带植物种质资源库 热带植物标本馆(HITBC) 西双版纳生态站 (XSTRES) 哀牢山生态站 (ASSFERS) 元江干热河谷生态站

管理系统

党政办公室 科技外事处 国有资产处 人事教育处 园建管理处 昆明办公室

业务机构

园林园艺部 科普旅游部

学术出版物

《雨林故事》电子杂志 版纳植物园年报

院地合作

合作项目 合作动态

科技副职

文化

文化活动

形象标识

信息搜索

请输入关键字

搜索

高级搜索

(多个关键字请用"空格"格开)

网站统计

形象标识

н н

Transesterification Mechanism Catalyzed by the Calcined Sodium Silicate

相关资料如下:

- [1] Feng Guo, Zhen-Gang Peng, Jian-Ying Dai, Zhi-Long Xiu. Calcined Sodium Silicate as Solid Base Catalyst for Biodiesel Production. *Fuel Processing Technology*, 2010, 91(3):322-328.
- [2] Feng Guo, Ning-Ning Wei, Zhi-Long Xiu, Zhen Fang. Transesterification Mechanism of Soybean Oil to Biodiesel Catalyzed by Sodium Silicate. *Fuel*, 2011, doi:10.1016/j.fuel.2011.08.064.
- [3] Yun-Duo Long, Feng Guo, Zhen Fang, Xiao-Fei Tian, Li-Qun Jiang, Xin Deng, Fan Zhang. Production of Biodiesel and Lactic Acid from Rapeseed Oil Using Sodium Silicate as Catalyst. *Bioresource Technology*, 2011, 102(13): 6884-6886.
- [4] Feng Guo, Zhen Fang. Biodiesel Production with Solid Catalysts, In the Book: Biodiesel, 2011. Edited by Margarita Stoytcheva, *InTech.* (ISBN 978-953-307-633-1), (ISSN 0192-303X).
 - [5] 郭峰,方真,龙运多. 一种联合生产生物柴油和乳酸的方法. 中国专利: CN201010537935, 5.
 - [6] 郭峰, 修志龙, 张代佳. 煅烧硅酸钠催化制备生物柴油. 中国专利: CN200710159084.3.
 - [7] 修志龙,郭峰,彭振刚. 一种硅酸盐催化制备生物柴油的方法. 中国专利: ZL200710011068.X.

附件下载

相关新闻

版权所有Copyright © 2002-2009 中国科学院西双版纳热带植物园【滇ICP备05000868号】

地址:中国 云南省勐腊县勐仑镇 邮政编码: 666303 电话: 0691-8715071 传真: 0691-8715070