研究论文

鼎湖山针阔叶混交林生态系统呼吸及其影响因子

王春林 1,2 ,周国逸 1 ,唐旭利 1 ,王旭 1 ,周传艳 1 ,于贵瑞 2 ,唐力生 2 ,孟泽 1

1.中国科学院华南植物园,广州510650 2.广东省气候中心,广州510080 3.中国科学院地理科学与资源研究所, 北京100101

收稿日期 2007-2-1 修回日期 2007-6-4 网络版发布日期: 2007-7-25

精确估算典型森林生态系统呼吸($R_{\rm eco}$)对评价生态系统碳平衡具有重要意义。采用开路涡度相关法 对鼎湖山针阔叶混交林 $R_{\rm eco}$ 进行定位测定,根据 $2003\sim2004$ 年数据采用多种呼吸模型对 $R_{\rm eco}$ 进行估算并分析 $R_{\rm eco}$ 对 环境要素的响应特征,结果表明: (1) R_{eco} 受土壤温度、湿度和冠层气温、相对湿度共同影响, R_{eco} 对环境因子的 响应模式存在季节性差异,总体上土壤温度是驱动 $R_{\rm eco}$ 的主要因子。(2) 描述 $R_{\rm eco}$ 与温度因子的关系模式中,指数 方程、Van't Hoff方程、Arrhenius方程和Lloyd-Talor方程,统计意义上具有同等的能力,从温度敏感性指标Q10 看,Lloyd-Talor方程比其他方程更适合于描述R_{eco}对温度的响应特征。(3) 由土壤温度(Ts)和土壤含水量(Ms)驱动 的连乘耦合模型,能综合反映Ts、Ms对 R_{eco} 的协同作用。在Ms较高时段,连乘模型模拟的 R_{eco} 高于Tloyd-Taylor 方程, 而在Ms较低时段连乘模型的结果低于Tloyd-Taylor方程, 但二者没有统计意义上的显著差异。(4) 鼎湖山 混交林2003年 $R_{\rm eco}$ 年总量,基于白天涡度相关通量观测资料的模型估算结果为1100~1135.6 gCm $^{-2}$ a $^{-1}$,比基于夜间通 量资料估算结果 (921~975 gCm $^{-2}a^{-1}$)增加12%~25%。采用白天通量资料估算 $R_{\rm eco}$,对克服夜间涡度相关法通量测 定结果偏低问题具有积极意义,为进一步可靠评估净生态系统CO2交换(NEE)奠定方法基础。

鼎湖山; 生态系统呼吸; 涡度相关; 中国通量网

分类号 X511

Ecosystem respiration and its controlling factors in a coni 服务与反馈 ferous and broad-leaved mixed forest in Dinghushan, Chi

WANG Chun-Li $n^{1,\,2}$, ZHOU Guo-Yi 1 , TANG Xu-Li 1 , WANG Xu 1 , ZHOU Chuan-Yan 1 , Y U Gui-Rui³, TANG Li-Sheng², MENG Ze¹

- 1 South China Botanical Garden, CAS, Guangzhou 510650, China
- 2 Guangdong Climate Center. Guangzhou 510080, China
- 3 Institute of Geographical Science and Natural Resources Research, CA
- S, Beijing 100101, China

Abstract Accurate estimation of ecosystem respiration (R_{eco}) in forest ecosystems is critical fo r validating terrestrial carbon models. Continuous eddy covariance measurements of R_{eco} were c onducted in a coniferous and broad-leaved mixed forest located in Dinghushan Nature Reserve o f south China. R_{eco} was estimated and the controlling environmental factors were analyzed base d on two years data from 2003 to 2004. Major results included that: (1) R_{eco} was affected by soi 1 temperature, soil moisture, canopy air temperature and humidity, where soil temperature at 5c m depth was the dominant factor. (2) Exponential equations such as Van't Hoff, Arrhenius and Ly old-Talor can be used to describe the relationship between R_{eco} and temperatures with similar sta tistical significance, while Lyold-Talor equation is the most sensitive for temperature index(Q_{10}); (3) The multiplicative model driven by soil temperature (Ts) and soil moisture (Ms) was more cor

responsive to R_{eco} , it explains more R_{eco} variations than Lyold-Talor equation, both for higher an d lower Ms. however, there was no statistical difference between the two models. (4) Annual acc

本文信息

- ► Supporting info
- ▶ [PDF全文](635KB)
- ▶[HTML全文](0KB)
- ▶参考文献

- ▶把本文推荐给朋友
- ▶加入我的书架
- Email Alert
- ▶文章反馈
- ▶ 浏览反馈信息

相关信息

本刊中 包含"鼎湖山;生态系统吗 吸; 涡度相关; 中国通量网"

▶本文作者相关文章

- 王春林
- 周国逸
- 唐旭利
- 王旭
- 周传艳
- 于贵瑞
- 唐力生
 - 孟泽

umulated R_{eco} of the mixed forest in 2003 was estimated as 1100-1135.6 gCm⁻²a⁻¹ using daytim e data, which was 12%-25% higher than R_{eco} (921-975 gCm⁻²a⁻¹) estimated by nighttime dat a. The results suggested that using daytime data to estimate R_{eco} can avoid the common underestimation problem of eddy covariance methods. The study provides method basement for further study of accurate estimation of NEE in the coniferous and broad-leaved mixed forest in southern China

Key words Dinghushan ecosystem respiration eddy covariance ChinaFLUX

通讯作者 王春林 wangcl@grmc.gov.cn