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Abstract

Induction of endogenous antioxidants is one of the key molecular mechanisms of cell resistance to hypoxia/ischemia. The effect of sever
hypoxia on the expression of cytosolic antioxidant thioredoxin-1 (Trx) in hippocampus and neocortex was studied in preconditioned and
non-preconditioned rats. The preconditioning consisted of three trials of mild hypobaric hypoxia (360 Torr, 2 h) spaced at 24 h. Twenty-four
hours after the last trial rats were subjected to severe hypobaric hypoxia (180 Torr, 3 h). Trx expression was studied by immunocytochemistry
In hippocampus severe hypobaric hypoxia rapidly induced Trx expression, which remained elevated still at 24 h. In neocortex the enhance:
expression appeared only at 24 h. The preconditioning significantly augmented severe hypoxia-induced Trx-immunoreactivity at 3 h but no
at 24 h. These findings point out that Trx contributes to mechanisms of brain tolerance to hypobaric hypoxia, especially in early periods aftet
the exposure.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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Severe hypoxia/ischemia can induce apoptotic and necroticactive disulfide/dithiol within the conserved active site se-
neuronal cell deat[8,27,61] The oxidative stress caused by quence —Cys—Gly—Pro—Cyg22,23] The thioredoxin reduc-
redox balance disruption and overproduction of reactive oxy- tase reduces the oxidized form using NADF&8]. Trx is in-
gen species (ROS) is an important mechanism of cell dam-duced by hypoxia/ischemi{d,50] and protects cells against
age produced by hypoxia/ischeniifa8,46] Oxidative stress  different kinds of oxidative stre§24,42,48]
and redox balance impairment are followed by a dysfunction  Mild hypoxic/ischemic preconditioning increases the neu-
of important redox-sensitive enzymes, membrane receptorsronal resistance to subsequent severe hypoxia/ischemia
and ion channel§32,55], DNA damage€5,6,18,44] mem- [29,41] The 2-min ischemic preconditioning suppresses the
brane lipid peroxidatio56,59] and cytochrome release cytochromec release from mitochondria induced by severe
from mitochondria, which activate the caspases that result in 5-min ischemia in gerbil hippocamp{6]. The expression
cell death[28,54] of Trx and other antioxidants appears to provide one of the
The thioredoxin and glutathione systems control the cel- neuroprotective mechanisms activated by the precondition-
lular redox state. Thioredoxin-1 (Trx) is a small (about ing[2].
12 kDa) multifunctional ubiquitous protein with a redox- We previously showed that hypobaric hypoxia increased
the expression of mitochondrial Trx-2 in different rat brain
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[45]. The aim of presentresearchistoinvestigate the cytosolic
Trx expression in rat neocortex and hippocampus in identical
experimental model.

Male Wistar rats weighing 200—250 g were subjected to ‘|‘
hypobaric hypoxia. Severe and repetitive mild precondition- t 1*
ing hypoxias were produced in a hypobaric chamber by main-
taining the pressure at 160-180 Torr (equivalent to 5% nor- (A) ]

mobaric oxygen) for 3h, and 360 Torr (equivalent to 10%

normobaric oxygenfor 2 h daily for 3 days, respectively.

The severe hypoxia produced in such a paradigm caused ex

tensive neuronal damage in hippocampus and neocortex, bu

the preliminary preconditioning prevented severe hypoxia-

induced neuronal damag@9]. All the animals were divided :

into three groups (four to six rats per group): (i) rats subjected (g, f 1

to severe hypoxia; (ii) rats subjected to preconditioning hy-

poxia 24 h prior to the severe hypoxia; (i) control rats placed .

in the chamber for 3 h with no hypoxia produced. The Trx P : . o

immunoreactivity was studied 3 and 24 h following severe /.% 2 - >

hypoxia. ‘ ] ot o , *

Forimmunocytochemistry the rats were anaesthetizedand ™ % ‘1 @ v 1" s

perfused transcardially first with 100 ml of saline followed (C}t

by 4% paraformaldehyde in 0.1 M phosphate-buffered saline -

(PBS; pH 7.3) for 4-5min. After perfusion the brains were

excised and subsequently fixed by immersion in the same

solution for 60 min. The samples were cryoprotected with &

15% sucrose in PBS and stored at°€ until sectioning U . t : ‘

in the cryostat. Immunocytochemistry was performed us- f 3

ing ABC-method. Coronal sections (juin) of the brain A4

(about—2.80 mm from bregm§B7]) were mounted onto the (F)

poly-L-lysine (Sigma) covered slides and then incubated with 4

affinity-purified rabbit antiserum against mouse cytosolic Trx »

[48] (dil. 1:500 in PBS containing 1% BSA and 0.3% Triton . - p e

X-100) at +4°C overnight. After several washes, the sec- L2 1, : * " L.
-t

-—
-
k4

-

tions were incubated with biotinylated goat antirabbit (Vector

Labs) antibodies (dil. 1:300) and ABC complex for 30 min

each. Diaminobenzidine was used as a chromogen to visual- (g)

ize the sites expressing Trx immunoreactivity. The sections

were dehydrated, mounted and assayed with image analysisig. 1. Trx-immunoreactivity in the CA1 area of hippocampus. Photomicro-

system consisting of IBM PC, Nikon Microphot-FXA mi-  graphs of control hippocampal CA1 field (arrows point non-labeled neurons)

croscope, SensiCam digital camera (pco Computer OptiCS(A)' hippocampal CAL1 field at 3 (arrows show lightly labeled neurons) (B),_

GmbH), Image-Pro Plus (Media Cybernetics) program. and 24_1h (few neurons are'moderately Iabeled) (D), after severe hypobaric

. . . . hypoxia and after precondioned severe hypoxia at 3 (most of the neurons

Trx expression was examined in fronto-parietal cortex, are strongly stained) (C), and 24 h (some neurons are strongly labeled) (E).

CALl, CA2, CA3 hippocampal fields and dentate gyrus. The scale bar: 5g.m.

Trx-immunoreactive cells were quantified in the area of

500pm in length (in hippocampus) or in square 300 and the number of intensely-labeled cells as a percent of con-

x 300um (in neocortex), using Videotest Morphology pro- trol (N;). One-way ANOVA was used for statistical analysis

gram. Six sections were analyzed from each brain; one field of data.

of each brain area studied was measured per each slice. The Immunocytochemistry revealed that Trx expressionin hip-

intensity of staining was expressed as conventional value of pocampus and neocortex was affected by severe hypoxia and

optical density scale from 0 (absolute white) to 100 (abso- preconditioning. A notable increase in Trx immunoreactiv-

lute black). Immunoreactive cells were divided in 2 relative ity in all hippocampal areas examined but not in neocortex

classes: slightly-labeled (staining intensity was at 1-10 con- was detected 3 h after severe hypoxiégé. 1-3. The ex-

ventional units above the background) and intensely-labeledposure to severe hypoxia significantly increasidin CA1

(more than 10 units above the background). Trximmunoreac- (129%) and CA2 (145%)Hig. 2). The number of intensely-

tivity was assayed using following criteria: the total number labeled cells ;) was essentially elevated in CA1 (238%),

of immunoreactive cells shown as a percent of contxpl)( CA2 (776%), CA3 (469%), and DG (259%di@. 3J).
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Fig. 3. Graphs showing changes in the number of intensely-labeledtcells
S.E.M. expressed as a percentage of conNgli6 different rat brain areas

at 3 and 24 h after severe hypobaric hypoxia (6F @) and preconditioned
severe hypoxia (Pn(= 5), as compared to control group (@)% 6). CAl

field of hippocampus (A), CA2 field of hippocampus (B), CA3 field of hip-
pocampus (C), dentate gyrus (D) and neocortex (E). Statistically significant
(P < 0.05) differences: (*) as compared to control, (#) between non- and
preconditioned animalss)(between 3 and 24 h time-point.

Fig. 2. Graphs showing changes in the total number of Trx-immunoreactive
cells+ S.E.M. expressed as a percentage of coniXql)(in different rat
brain areas at 3 and 24 h after severe hypobaric hypoxian(§)4) and
preconditioned severe hypoxia ()% 5), as compared to control group (C)
(n=6). CA1 field of hippocampus (A), CA2 field of hippocampus (B), CA3
field of hippocampus (C), dentate gyrus (D) and neocortex (E). Statistically
significant P < 0.05) differences: (*) as compared to control, (#) between
non- and preconditioned animalg) between 3 and 24 h time-point.
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Preconditioning with mild repetitive hypoxia markedly ditioning greatly promotes this protective reaction in hip-
augmented severe hypoxia-induced Trx expression in all pocampus and induce it in neocortex. The augmentation
brain areas studied at 3 h time-poikitds. 1-3. The increase  of Trx expression at early period of reoxygenation critical
inthe number ofimmunoreactive celld() was considerably ~ for apoptosis initiation provides one possible mechanism of
higher in preconditioned rats then in non-preconditioned ones hypoxic/ischemic tolerance produced by the precondition-
in CA1 (159% from control), CA2 (207%), DG (154%), and ing.
neocortex (107%)Kig. 2). The increase ilN; was obviously In neocortex hypoxia without preconditioning induced Trx
higher in preconditioned rats then in non-preconditioned ones expression only at 24 h time-point. In hippocampus at this
in CAl (536%), CA2 (1158%), CA3 (898%), and neocortex period the Trx expression remained enhanced. Hence the re-
(244%) Fig. 3. sponse in hippocampus is faster then in neocortex. In the

At 24h after severe hypoxia, Trx immunoreactiv- hippocampus of preconditioned rats the Trx expression in-
ity remained enhanced in all hippocampal areas studiedduction ceased by 24 h whereas in neocortex it continued to
(Figs. 1-3. N, was markedly increased in CA2 (159%), increase.

CA3 (131%), and DG (129%) as compared to contigl. Thiol redox status is one of the key factors of the apop-
was increased in all brain areas studied: CAl (421%), CA2 tosis regulatiorf43]. The protective functions of Trx dur-
(1027%), CA3 (1185%), DG (223%) and neocortex (337%). ing oxidative stress are diverse. One of the key Trx de-
When compared to 3 h time-point, Trx immunoreactivity at fense function is the buffering of ROB5,51] and inhi-

24 h was significantly elevated only in CABIj(but notN..) bition of cytochromec release from mitochondrif2]. By

and in neocortexN,. as well as\;) (Figs. 2 and B this way Trx can inhibit the apoptosis triggering. On the
At 24 h after severe hypoxia there was no remarkable other hand Trx can switch necrosis to apoptosis by the

difference in the Trx immunoreactivityN; as well asN;) regulation of redox-sensitive caspase actiiit,52] In

between pre- and non-preconditioned anim&lgg. 1-3 addition, Trx appears to function as a potent activator of

except in CA3 wheréN; was found to be higher in non- other antioxidant systems, e.g. Mn-superoxide dismutase
preconditioned ones. When compared to 3 h time-point, a[10].
decrease of the immunoreactivity in hippocampal fields of  Trx s translocated from cytoplasm to nucleus upon stress
preconditioned rats was apparent at 24 h time-point: the [33] and activates the transcriptional factors by enhancing
changes of\; were not significant buN noticeably de- their binding activity to the target DNA: NkB, AP-1,
creased in CAl (136% from control), CA2 (157%), and CREB, PEBP2/CBF, Myb, and HIF{1,9,16,19-21,57,58]
DG (132%). On the contrary, in neocortex Trx immunore- estroger17] and glucocorticoid30,31]receptors. Trx also
activity (N; but not N, ) of preconditioned rats was sub- augmented the DNA binding activity of pg33]. Oxida-
stantially elevated at 24h as compared to 3h time-point tive stress induced p5@1] can in its turn activate a G1
(Fig. 3. cyclin-dependent kinase inhibitor p28Y/ WAFL that cause
Trx provides an important defense of brain neurons dur- the cell-cycle arrest, presumable to allow an opportunity
ing various hypoxic/ischemic events. Trx protein and mRNA for DNA repair [12,51] But p53 also can induce apopto-
expression was down-regulated in the ischemic core regionssis[3] by an activation of proapoptotic protein Bax, result-
but up-regulated in the perifocal ischemic regions since 4 h ing in cytochromec release[34]. Trx augments the p53-
after focal brain ischemifl5,47,49] the induced Trx was  dependent p21 transcriptional activity and protein expression
translocated into the nucleus after ischemia and ischemia-and thereby switch apoptosis triggering to DNA reparation
reperfusion. It is important that changes in Trx expression way [53].
were observed in the earliest period after the insult because Trx is a negative regulator of apoptosis signal-regulating
the first 2-4 h after the exposure to severe hypoxia are sup-kinase 1 (ASK1)[40]. ASK1 was identified as one of
posed to be crucial for cytochrontaeleasd11]. Transient the mitogen-activated protein (MAP) kinase kinase ki-
global ischemia induced Trx in glial cells of the gerbil hip- nases, which activates theeJun N-terminal kinase (JNK)
pocampu$50]. Overexpression of the Trx in transgenic mice and p38 MAP kinase and induces stress-mediated apop-
attenuates focal ischemic brain dam§{f#), on the contrary,  tosis signaling[25]. ASK1 stimulates cytochrome re-

its inhibition increases oxidative stre€®]. In addition, Trx lease and executes apoptosis mainly by mitochondria-
reduces hypoxia-reoxygenation injury in cell culture in vitro dependent caspase activatid4]. The negative regulation
[26]. of ASK1 appears to be one of the Trx cytoprotective ef-

In present study we for the first time showed that cy- fects. Trx also negatively regulates TNF-induced activa-
tosolic Trx involved in neuronal responses to hypobaric hy- tion of p38 MAP kinasq13] activated by oxidative stress
poxia. The expression of Trx in the brain of preconditioned [25].
and non-preconditioned animals at 3 and 24 h following In conclusion, brain expression of thioredoxin-1 is en-
severe hypoxia was studied by immunocytochemistry. Se- hanced after severe hypobaric hypoxia; the hypoxic precondi-
vere hypoxia up-regulated the Trx expression in hippocam- tioning considerably up-regulates this enhancement. Present
pus at 3h time-point; this induction appears to represent findings suggest a possible role for cytosolic antioxidant
an adaptive neuronal response to oxidative stress. Preconthioredoxin-1 in the induction of brain hypoxic tolerance.
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