

Cornell University Library

arXiv.org > q-bio > arXiv:1204.6584

Quantitative Biology > Cell Behavior

Modelling of light driven CO2 concentration gradient and photosynthetic carbon assimilation flux distribution at the chloroplast level

M. Jouravlev

(Submitted on 30 Apr 2012)

The steady state of the two-substance model of light driven carbon turnover for the photosynthetic CO2 assimilation rate is presented. The model is based on the nonlinear diffusion equation for a single chloroplast in the elliptical geometry by assuming light driven Ribulose-1,5-bisphosphate (RuBP) regeneration and CO2 assimilation reaction of carboxilation coupled with the photosynthetic sink strength. The detailed analysis of 3 -dimensional CO2 concentration and flux on the chloroplast level is made. It is shown that under intense light irradiation there exists a boundary layer of chloroplasts with a high value of CO2 assimilation flux. The presented simplified model can be used for the calculations and experimental estimations of the CO2 assimilation rate for environmental applications.

Comments:	30 pages, 6 figures, 1 table, submited to Biophysics (Russian)
Subjects:	Cell Behavior (q-bio.CB); Exactly Solvable and Integrable
	Systems (nlin.SI); Biological Physics (physics.bio-ph); Chemical
	Physics (physics.chem-ph)
Cite as:	arXiv:1204.6584 [q-bio.CB]
	(or arXiv:1204.6584v1 [q-bio.CB] for this version)

Submission history

From: Mikhail Jouravlev [view email] [v1] Mon, 30 Apr 2012 09:54:11 GMT (494kb)

Which authors of this paper are endorsers?

Search or Article-id

Download:

• PDF only

Current browse context: q-bio.CB < prev | next > new | recent | 1204 Change to browse by:

nlin nlin.SI physics physics.bio-ph physics.chem-ph q-bio

References & Citations NASA ADS Bookmark(what is this?)

