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Abstract 
Signals recorded from neurons with extracellular planar sensors have a wide range of waveforms and 

amplitudes. This variety is a result of different physical conditions affecting the ion currents through a 
cellular membrane. The transmembrane currents are often considered by macroscopic membrane models 
as essentially a homogeneous process. However, this assumption is doubtful, since ions move through ion 
channels, which are scattered within the membrane. Accounting for this fact, the present work proposes a 
theoretical model of heterogeneous membrane conductivity. The model is based on the hypothesis that 
both potential and charge are distributed inhomogeneously on the membrane surface, concentrated near 
channel pores, as the direct consequence of the inhomogeneous transmembrane current. A system of 
continuity equations having non-stationary and quasi-stationary forms expresses this fact mathematically. 
The present work performs mathematical analysis of the proposed equations, following by the synthesis 
of the equivalent electric element of a heterogeneous membrane current. This element is further used to 
construct a model of the cell-surface electric junction in a form of the equivalent electrical circuit. After 
that a study of how the heterogeneous membrane conductivity affects parameters of the extracellular 
electrical signal is performed. As the result it was found that variation of the passive characteristics of the 
cell-surface junction, conductivity of the cleft and the cleft height, could lead to different shapes of the 
extracellular signals. 
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Introduction 
Techniques of the extracellular electrical recording 

and stimulation made a significant progress since an 
introduction of a first planar microelectrode arrays 
and field-effected transistors (Thomas et al., 1972; 
Bergveld et al., 1976; Gross et al., 1977) (Fig. 1). 
Microelectrode arrays fabricated according to modern 
semiconductor technologies often integrate multiple 
elements of passive and active circuitry. Arrays are 
used to effectively record, amplify and condition 
extracellular signals as well to perform extracellular 
stimulation (Eversmann et al., 2003; Lambacher et al., 
2004). Nowadays microelectrode arrays are 
considered as a basic platform for the development of 
cell-based sensors (Parce et al., 1989; DeBusschere & 
Kovacs, 2001; Yeung et al., 2001; Pancrazio et al., 
2003). 

 
Fig. 1. Schematic view of an electrode covered with 
neurons 

 
The application of microelectrode arrays gave a 

start to a long-term investigation of different dynamic 
processes taking place in cell cultures and tissue slices 
(Besl & Fromherz, 2002; Heuschkel et al., 2002; 
Jimbo et al., 2006). A diversity of shapes and a wide 
range of amplitudes of signals recorded with planar 
electrodes from different neurons have been reported 
(Gross, 1979; Regehr et al., 1989; Bove et al., 1995; 
Breckenridge et al., 1995; Jenkner & Fromherz, 1997; 
Schatzthauer & Fromherz, 1998; Fromherz, 1999; 
Ruardij et al., 2009). Signals were generally classified 
(arranged in types) according to the waveform and 
amplitude (Fromherz, 2003). This classification is 
used conventionally for spike detection and sorting in 
the cell population (Salganicoff et al., 1988; Sarna et 
al., 1988) as well as for an individual cell 
characterization (Stett et al., 2003). In cited papers all 
signal types where explained to originate from and 
simulated on the basis of several possible 
mechanisms: the asymmetry of the cell soma and 
neurites shapes (Bove et al., 1994; Gold et al., 2006), 
variability of sealing resistance in the neuron-
electrode electrical contact (Grattarola & Martinoia, 
1993) and the membrane channel distributions 
(Jenkner & Fromherz, 1997; Schatzthauer & 
Fromherz, 1998; Fromherz, 1999; Buitenweg et al., 
2002). 

Up to date main models for a signal simulation are: 
current sources field integration (Plonsey, 1964; 
Plonsey & Barr, 2007), equivalent electric circuits 

(Regehr et al., 1989; Grattarola & Martinoia, 1993) 
and geometry-based finite-element modeling 
(Buitenweg et al., 2002, Heuschkel et al., 2002). In 
these models the membrane current is described with 
a stationary continuity equation. In the integrated 
form, the stationary continuity equation corresponds 
to the Kirchhoff’s law. According to the Kirchhoff’s 
law the membrane current is a sum of capacitive and 
ionic currents: 

( ) ( )m
m m m c mj c j

t
∂Δψ

ψ = + Δψ
∂

,  (1) 

where, jm – the total membrane current density, ψm – a 
membrane potential, Δψm – a transmembrane 
potential, cm – a membrane specific capacitance, t – 
the time variable, jc – the ionic current density.  

It should be pointed out, that the Kirchhoff’s law 
for the membrane current in Eq. 1 assumes the 
homogeneous flow of the charge through the 
membrane. However, on the biological basis, the 
transmembrane current is flowing through ion 
channels and not through the whole cellular 
membrane. Total channels cross-section area is less 
than 0.01 % of the total membrane area (Nicholls et 
al., 2001). In addition, the distance between channels 
of identical types is often can be even larger than the 
distance between the cellular membrane and the 
sensor surface (the distance between channels can be 
estimated from the conductivity of the membrane and 
the channels). 

In the case of a homogeneous charge flow in Eq. 1, 
the value of the transmembrane current is the function 
of the membrane conductivity only. However, if the 
charge is transferred through the membrane channels, 
then the conductivity of solution near the membrane 
should directly influences the charge relaxation on 
membrane surfaces and, consequently, the total 
membrane current (Fig. 2). 

 
Fig. 2. Difference between homogenous (a) and 
heterogeneous (b) membrane conductivity 

 
The present work proposes a theoretical model of 

the heterogeneous membrane conductivity. The model 
is based on the hypothesis that the electrical potential 
as well as charge are distributed inhomogeneously on 
membrane surfaces due to the transmembrane current 
inhomogeneity. The model is expressed with a system 
of continuity equations and has non-stationary and 
quasi-stationary forms. 
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To obtain parameters for the heterogeneous 
membrane conductivity model, a charge flow through 
the single membrane pore (channel) was 
computationally simulated. Potential-to-charge ratio 
in the vicinity of the membrane channel was estimated 
as a function of the membrane capacitance, channel 
radius and average channel density empirically. 

On the next step the equivalent electric element of 
the cellular membrane was developed. It was based on 
the heterogeneous membrane conductivity model 
which implies that the membrane conductivity of the 
element has dependence on the medium conductivity 
on both sides of the membrane. 

This equivalent electric element of the 
heterogeneous membrane current was further 
employed in a model of the cell-surface electric 
junction. Build in a form of the equivalent electrical 
circuit the model was used to evaluate effects of the 
heterogeneity in the membrane conductivity on signal 
parameters. Main types of extracellular electrical 
signals have been acquired when this model was 
subjected to various cell-surface junction heights and 
junction conductivities. 

 
Model of the heterogeneous membrane 

conductivity 
When the charge is traveling in and out the channel 

pore it creates the region of excess charge Qe and 
overpotential ψe just near the end of the channel. The 
values of the additional excess charge Qe and 
overpotential ψe can be conveniently defined in 
relation to a spatially homogeneous charge Qm and 
potential ψm on the rest of the membrane surface. 
Existence of the overpotential near the pore allows to 
define a transchannel potential (total local potential 
over the channel) as the sum Δψm +Δψe, which is 
obviously different from the simple transmembrane 
potential Δψm and, which is actually should be used 
when one calculates the conductance of the potential-
dependent channel. 

Following this, a general scheme of the model can 
be described as a two-step process: charge transfer 
into the region with the excess charge near the end of 
membrane channel following by the immediate 
drifting of the transferred charge into the spatially 
homogeneous charge region nearby (Fig. 3). 

The rate of change of the excess charge Qe is a sum 
of a current through the channel Jc and a lateral 
relaxation current Je as depicted in the Fig. 3. At the 
same time the rate of change of the spatially 
homogeneous charge Qm is equal to the sum of the 
lateral relaxation current Je and a transmembrane 
current Jm (the charge migration current). These 
statements can be written as: 

 
Fig. 3. Scheme of the heterogeneous membrane 
conductivity model: relative positions of the excess Qe 
and homogeneous Qm charges, directions of the 
channel Jc, lateral Je and total membrane Jm currents 
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In the system of Eqs. 2 the value of the lateral 
relaxation current Je is the total current flowing 
inward through an imaginary closed surface covering 
the excess charge Qe region. Applying the Ohm's law 
and Gauss-Ostrogradsky theorem to the Gauss's law, 
the following equation can be derived: 

,QJ ee ε
δ

−=      (3) 

where, δ – a conductivity of a solution, ε – the 
dielectric permittivity of the solution. 

Since the value of the current through the channel 
Jc now is a function of the total potential Δψm +Δψe 
and the value of the transmembrane current is a 
function of the spatially homogeneous potential ψm the 
system of Eqs. 2 may be rewritten in the next form: 
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In the system of Eqs. 4, values of homogeneous 
and excess charges relate to the homogeneous 
potential and overpotential accordingly:  

.KCQ
,CQ

eeme

mmm

ψ=
ψΔ=

    (5) 

where, Ke – a some coefficient, which connects values 
of the excess charge and overpotential near the 
channel end. Ke will be discussed and estimated later. 

Substitution of Eqs. 5 into Eqs. 4 gives a non-
stationary form of the heterogeneous membrane 
conductivity model: 
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(6) 

In the second equation of Eqs. 6 the ratio ε / δ = τ 
is a time constant, which defines a rate of the excess 
charge relaxation. In the case of physiological saline 
estimation gives τ ≈ 10-9 sec. It is much less than the 
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channel activation time. As result one may conclude 
that the excess charge reaches a stationary value much 
faster than the homogeneous charge and 
transmembrane potential do. With this condition met 
the second differential equation can be replaced by the 
algebraic Eqs. 7. 
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In the system of Eqs. 7 performing addition of the 
second equation to the first one leads to the equation 
(first in the Eq. 8) in the form similar to the Eq. 1. 
Value of the overpotential ψe could be derived from 
the second equation in Eqs. 7. The system of Eqs. 8 is 
a quasi-stationary form of the heterogeneous 
membrane conductivity model. 
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It can be seen from the second equation in Eqs. 8 
that the smaller conductivity of the environment near 
the channels pore is, the greater overpotential might 
appear. 

Homogeneous membrane conductivity (Eq. 1) is a 
special case of model of the heterogeneous membrane 
conductivity (Eqs. 8): the value of overpotential ψe 
becomes insignificant under conditions that 
conductivity of solution δ, factor Ke are big or/and 
transchannel current Jc is small. 

 
Channel density factor

 

 
The coefficient Ke that binds values of the excess 

charge and overpotential near the channel was 
introduced in the second equation of Eqs. 5. This 
coefficient has a natural dependence both on the 
channel as well patch geometry and dimensions 
making it hard to be described analytically in general. 
However, numerical computational simulations of the 
ion current flowing through the membrane pore 
(channel) provides a convenient means to obtain this 
coefficient at least for a specific case. 

The geometry that was used in simulations 
represents a cylinder separated onto two halves with a 
membrane containing a single pore. The cylinder has 
a height equal to 400 nm and a radius rm=200 nm. The 
thickness of the membrane is 10 nm and the radius of 
the pore is rc=0÷200 nm. The whole geometry has an 
axial symmetry. The compartment and channel are 
considered to be filled with the 0.1 M binary aqueous 
electrolyte (KCl) at 300 K. A relative permittivity of 
the membrane is equal to 4. 

The transient drift-diffusion (Nernst-Planck-
Poisson) problem was used to describe the spatio-
temporal distribution of potential and charge within 
the system. Boundary conditions for concentrations 

considered the insulation barrier at the compartment 
and membrane surfaces. Boundary conditions which 
are related to the potential distribution were: absence 
of any charges on the side, top and bottom surfaces of 
the geometry, continuity of the electric potential on 
the membrane and pore boundaries. Potential at a 
point in the middle of membrane at the compartment 
side was taken to be a zero reference potential. 

The drift-diffusion problem was solved with the 
finite-element method using a program environment 
of COMSOL Multiphysics (COMSOL Group). The 
application modes were chosen to be the “Nernst-
Planck without Electroneutrality” and “Electrostatic”. 
Space dimension had 2D axial symmetry. A non-
uniform grid with a higher density near the membrane 
(element size 1 nm) and pore (element size 0.1 nm) 
was used. Computations were performed with the 
BDE time depended solver and direct (UMFPACK) 
linear system solver. 

To set up initial conditions the membrane was 
allowed to be charged by applying a step of the 
transmembrane potential of 100 mV. The 
transmembrane potential was applied by setting a 
fixed potential on the top and bottom of the geometry 
compartments. At the appropriate time after this the 
spatially homogeneous charge has appeared near the 
membrane. After the charging, top and bottom 
boundaries of the compartment were set to have a zero 
charge and the membrane started a slow discharge 
process by ions drifting through the pore. During the 
drifting phase the electric potential and surface charge 
density at the plane of the membrane side were 
observed. The surface charge density was obtained by 
integration of a spatial charge density in the direction 
orthogonal to the membrane. The simulation was 
performed for a set of different radiuses of the pore: 
from 0 to 200 nm. 

Results of the simulation for the channel radius 
rc=5 nm at an arbitrary selected time (as an example) 
are shown on the Fig. 4. Corresponding profiles of the 
potential and surface charge density on the 
membrane/channel surface are presented on the Fig. 5. 

 
Fig. 4. Results of the solution for the mixed Nernst-
Planck-Poisson problem in cylindrical coordinates 
(z, r) for the channel of radius rc=5 nm in an arbitrary 
point of time: equipotential surfaces and current lines 
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Fig. 5. Results of the solution for the mixed Nernst-
Planck-Poisson problem in cylindrical coordinates 
(z, r) for the channel of radius rc=5 nm in an arbitrary 
point of time: profiles of the potential and surface 
charge density on the membrane/channel surface 

 
Excess charge density qe and overpotential ψe were 

obtained in the point that lay on the channel axis just 
near the channel end. From simulations for different 
channel radiuses, the relationship between qe and ψe 
was found to be independent on the channel current, 
but it did depend on the channel and patch radiuses 
(Fig. 6). This relationship appeared to be well 
approximated by the curve given by the Eq. 9, where, 
λ is the Debye length: 
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Fig. 6. Results of the solution for the mixed Nernst-
Planck-Poisson problem for different channel 
radiuses: relationship between the excess charge 
density qe and overpotential ψe in the dependence on 
channel radius 

 
Ke function is expressed from Eqs. 5 and Eq. 9, 

using ece qrQ 2π=  and mmm crC 2π= , to get the 
following formula: 
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Eq 10 can be further simplified in the case when: 

cm rr >>  - which means a low channel density; and 

λ≈cr  - which means that a minimal size of a 
screened charge in the solution is equal to the Debye 
length. By applying these assumptions, one can 
express: 

2

2

10
m

e r
K λ

= .     (11) 

After introduction of the ion channel density
21 mrπ=η , Eq 11 can be rewritten as: 

.Ke
210πηλ=      (12) 

Thus, Ke function can be called a channel density 
factor. 

 
Equivalent electric element of heterogeneous 

membrane current 
Equations of the heterogeneous membrane 

conductivity model could be modified into the 
equivalent electric element of membrane current that 
can be used in the cell-surface junction point contact 
model. 

The non-stationary form of the heterogeneous 
membrane conductivity model in Eqs. 6 can be 
rewritten in form of the following Eq. 13 and Eqs. 14: 
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System of Eqs. 14 could be rewritten in terms of 
the capacitance and current surface density: 
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System of Eqs. 15 describes the current density 
only at one side of the membrane. To complete the 
membrane description with a second side all equations 
in the system of Eqs. 15 were doubled for the inner 
(in) and outer (out) currents densities: 
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Finally, currents were written down for all type of 
ions, which in our case are Na, K, Cl: 
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By analogy with Eqs. 14-17 the quasi-stationary 
form of the equivalent electric element takes the next 
form: 
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Thus, Eqs. 17 are the non-stationary form and 
Eqs. 18 are the quasi-stationary form of the equivalent 
electric element of the membrane heterogeneous 
current. The electrical current in the equivalent 
element depends on the transmembrane potential as 
well as on intra- and extracellular conductivities of the 
solution. 

 
Cell-surface junction point-contact model 
The main interest, which remains till this point, is 

to figure out how the heterogeneous membrane 
conductivity could affect a shape of the recordable 
extracellular signal under various conditions. A one 
approach could be the development of a simplified 
point-contact cell-surface junction model describing 
the extracellular electrical arrangement between the 
cell and the sensor. 

Sufficiently simplified point-contact model that 
could describe the experiment may include five 
compartments as referred to on the Fig. 7: a cell (c), 
an external solution (s), a junction between a cell and 
a surface (j), a measuring electrode (l) and, finally, a 
reference electrode (r).  

Now in order to describe a cellular membrane the 
equivalent electric element of heterogeneous 
membrane current should be used. The non-stationary 
form of the equivalent electric element was exploited 
because of the fact that a numerical solution of 
Eqs. 17 is more stable. Ion currents through channels 
jn

C were introduced by a set of Hodgkin-Huxley 
equations (Hodgkin & Huxley, 1952). 

 
Fig. 7. Equivalent circuit of the cell-surface junction 
point-contact model (list of symbols in Table 1) 

 
The Ohm’s law was applied to calculate currents 

through other homogeneous borders. Values of 
parameters and sizes of boundaries are summarized in 
the Table 1. To calculate the seal conductance of the 
cleft the following formula was used (Fromherz, 
2003): 

4j jG h,= πδ     (19) 
where, δj – the conductivity of the cleft, h – the cleft 
height. 

Additional transmembrane current (0.3 nA) was 
injected into the cell to stimulate electrical activity. 

The equivalent circuit of the model corresponds to 
the initial value problem for a first-order differential 
equation system. Matlab software (MathWorks) 
multistep solver ode15s based on variable-order 
numerical differentiation formulas was used to solve 
the problem. 

 
Results and discussion 
Parameters, which determine a type of the cell-

surface junction, are the conductivity of the cleft (δj) 
and the cleft height (h). Both determine the seal 
conductance of the cleft according to the Eq. 19. At 
the same time, the conductivity of the cleft determines 
the value of the excess charge and overpotential near 
the membrane channels according to Eqs. 4, 6. As the 
consequence, the conductivity of the cleft influences 
the potential drop that appears across the channel, 
which in turn controls the channel current. 

Decrease in the conductivity of the cleft results in 
the excess charge build up and overpotential increase 
near the channel pore. For sodium channels the excess 
charge and overpotential in the cleft have negative 
values. This leads to a more rapid transchannel 
potential depolarization (here more rapid means when 
compared with the membrane depolarization) and 
results in the early sodium channel activation. On the 
contrary, for potassium channels, the excess charge 
and overpotential in the cleft have positive values. 
This lowers the transchannel potential depolarization 
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(when compared with the membrane depolarization) 
and reduces the channel potassium current (Fig. 8). 
Further decrease of the conductivity brings the 
potential difference over the channel down and leads 
to a further current recession. This effect is similar to 
a channel closure. As result: the less the conductivity 
of the cleft is, the more rapidly the sodium current 
increases and less of the potassium current flows 
(Fig. 8). 

 
Fig. 8. Shifts in the transchannel potential waveform 
for sodium (--) and potassium (···) channels relative to 
the transmembrane potential (-) with the low 
conductivity in the cleft 

 
Extracellular electrical signals simulated for 

different values of the conductivity of the cleft and the 
cleft height are shown in the Fig. 9. 

 
Fig. 9. Dependence of extracellular signal amplitudes 
(amplitude in mV, signal duration is 15 ms) and 
shapes (A, B, C, D-type) on the cleft height and on the 
conductivity of the cleft 

 
Because of the low conductance of the measuring 

electrode Gu, its potential ψl
m is equal to the potential 

in the cleft ψj
m. This electrical potential is controlled 

by the Kirchhoff’s law, which takes the next form: 
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When conductivity of the cleft is large, for 
example equal to the conductivity of the extracellular 
solution, overpotential near the channels on the 
bottom and top membrane halves are small and equal 
among themselves. This situation is the symmetrical 
charge transfer process, when ionic and capacitive 
currents have similar magnitudes but opposite 
directions. As a result the total membrane current 
vanishes and the extracellular potential has small 
amplitude (A-type signals on Figs. 9, 10). 

 
Fig. 10. Main types of extracellular electrical signals 
(in the third row) and corresponding to them: 
transchannel (-- Na, ··· K) and transmembrane (-) 
potentials (in the first row), currents (-- Na, ··· K, - 
capacitive) (in the second row), the lateral 
conductivity and the cleft height (in the fourth row) 

 
Under conditions when the conductivity of the 

cleft is moderate and the capacitance of the substrate 
is small, cleft signal shape is proportional to the total 
membrane current and the signal amplitude depends 
on the seal conductance (Eq. 20). This type of contact 
can be called “ohmic”. The total membrane current 
now is the sum of the current through the membrane 
capacitance with ionic currents through channels 
(Eq. 20). A more rapid sodium current increase leads 
to a more apparent first negative peak in the 
extracellular signal shape (C, D-type signals on 
Figs. 9, 10). 

In the situation when the conductivity of the cleft 
is very small, say approximately thirty times less than 
the conductivity of the extracellular solution, the seal 
conductance as well as the potential difference across 
the channel are considerably small. If this potential 
falls below an excitation threshold, ionic channels of 
the bottom cellular membrane may not be activated. 
In this case the extracellular signal ψj

m is proportional 
to the intracellular potential ψc

m and the amplitude of 
the signal depends on the membrane and substrate 
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capacitances (Eq. 20). This type of contact can be 
called “capacitive”. For this contact type, the 
amplitude of the extracellular signal increases because 
of the decrease in the seal conductance (B-type signals 
on Figs. 9, 10). 

It is interesting to note that all signals on the Fig. 9 
were obtained with the same value of the seal 
conductance of the cleft ~54 nS (according to the 
Eq. 10), which corresponds to the seal resistance value 
of 18.5 MOhm. 

Signals with shapes corresponding to the main 
types (A, B, C, D-type) of extracellular signals, which 
were found experimentally and described by other 
authors (Jenkner & Fromherz, 1997; Schatzthauer & 
Fromherz, 1998; Fromherz, 1999), could be seen 
among simulated extracellular signals (Figs. 9,10). 
Shapes of other signals represent a combination of 
these basic types of signals. 

 
Conclusion 
With the aid of the heterogeneous membrane 

conductivity model it was shown that changes in the 
passive cell-surface junction characteristic (like the 
conductivity of the cleft and the cleft height) may 
appear to be a sufficient cause of different types of 
extracellular signals. 

Without any doubt proposed heterogeneous 
membrane conductivity model describes only one of 
possible mechanisms of the extracellular signal 
formation. The heterogeneous membrane conductivity 
mechanism was tested as alone to show its 
applicability in the presented point-contact model of 
the cell-surface junction. To describe or simulate full 
realistic picture of signal formation process, one have 
to take into consideration all possible mechanisms 
mentioned in the introduction. 

The effects of the heterogeneous membrane 
conductivity will be significant if signals are 
registered in close cell-electrode contact. If the cells 
are far away from electrode, then the relative position 
of the cell soma and neurites will determine the 
signals shape (Gold et al., 2006). 

The point-contact model was used to simulate 
signals recording from current-stimulated cell. Cell 
stimulation can be also simulated by applying 
constant ore variable electric potential in one of the 
nodes (ψm

c, ψm
j, ψm

l, ψm
s) of the equivalent circuit of 

the cell-surface junction (Fig. 7). 
The heterogeneous membrane conductivity model 

is heavily based on the continuum electrostatics to 
describe the charge and potential near the membrane 
channel. Of course, at the nanometer level Brownian 
and molecular dynamics methods could be preferred 
over the Nernst-Planck-Poisson method (Corry et al., 
2000). But the Nernst-Planck-Poisson theory is very 
useful for the ensemble-averaged description. 

Hodgkin-Huxley equations, which were used to 
describe currents through channels (Hodgkin & 
Huxley, 1952) could be altered to reflect other sorts of 

ion channels with the current kinetics different for 
various types of cells. However, as a result, 
extracellular signal shapes could be changed in some 
extent. 

The cleft height in the average cell-surface 
junction was reported to be 50-70 nm (Fromherz, 
2003). More wide range of the cleft heights was 
intentionally used in the simulation to demonstrate the 
signal waveform and amplitude dependence on the 
height. 

It is also necessary to note that the conductivity of 
the cleft together with the cleft height unambiguously 
determine electric properties of the cell-surface 
junction. Therefore, they can be used as the 
characteristic properties of the cellular adhesion to 
various surfaces. 

 
Table 1 Parameters of the cell-surface junction point-
contact model 

Variables and parameters Symbol Value 
Intracellular potential ψm

c  

Potential in the cleft ψm
j  

Potential of the measuring 
electrode 

ψm
l  

Potential in an external solution ψm
s  

Potential of a reference electrode ψm
r 0 mV 

Dielectric permittivity of the 
solution 

ε 81·ε0 F/m 

Debye length λ 1 nm 
Cleft height h 5÷105 nm 
Conductivity of the cleft δj 0.06÷1.80 

S/m 
Conductivity of the external 
solution 

δs 1.8 S/m 

Conductivity of the cell δc 0.6 S/m 
Total membrane current of a 
bottom cell patch 

Je
s je

s·Sm
s 

Total membrane current of a top 
cell patch 

Je
j je

j·Sm
j 

Capacitance of the top cell patch Cm
s cm·Sm

s 
Capacitance of the bottom cell 
patch 

Cm
j cm·Sm

j 

Capacitance of the measuring 
electrode 

Cl cl·Sl 

Capacitance of the reference 
electrode 

Сr cr·Sr 

Capacitance of the measuring 
electrode in substrate 

Cu cu·Su 

Capacitance of the substrate Cd cd·Sd 
Conductance of the measuring 
electrode 

Ge ge·Se 

Conductance of the reference 
electrode 

Gr gr·Sr 

Conductance of the measuring 
electrode in substrate 

Gu gu·Su 

Conductance of the substrate Gd gd·Sd 
Specific capacitance of the 
membrane 

cm 50 mF/m2 

Specific capacitance of the 
measuring electrode 

ce 2 mF/m2 

Specific capacitance of the 
reference electrode 

cr 2 mF/m2 
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Specific capacitance of the 
measuring electrode in substrate 

cu 1 mF/m2 

Specific capacitance of the 
substrate 

cd 3 mF/m2 

Conductivity of the measuring 
electrode 

ge 1 S/m2 

Conductivity of the reference 
electrode 

gr 1 S/m2 

Conductivity of the measuring 
electrode in substrate 

gu 1 mS/m2 

Conductivity of the substrate gd 1 mS/m2 
Area of the top cell patch Sm

s 2000 μm2 
Area of the bottom cell patch Sm

j 1000 μm2 
Area of the measuring electrode Sl 300 μm2 
Area of the reference electrode Sr 1000 mm2 
Area of the measuring electrode in 
substrate 

Su 300 μm2 

Area of the substrate Sd 700 μm2 
Channel density factor for sodium 
channels 

Ke
Na 1·105 

Channel density factor for 
potassium channels 

Ke
K 3·105 

Channel density factor for chlorine 
channels 

Ke
Cl 2·106 
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