研究论文

温室茄子(Solanum melongena L.)光合数学模型与光合生化模型模拟分析

高志奎^{1,*},高荣孚²,何俊萍¹,王梅¹,钟传飞²

1.河北农业大学,保定071001 2.北京林业大学,北京100083

收稿日期 2006-6-14 修回日期 2007-2-1 网络版发布日期: 2007-6-25

关键词 <u>日光温室,茄子,CO2施肥,光合日变化,光合生化模型</u>

分类号 <u>Q141, Q945.11, Q948, S641.1</u>

Analysis of photosynthetic simulation by a biochemical model or mathematical model in greenhouse eggplant

GAO Zhi-Kui1, *, GAO Rong-Fu 2 , HE Jun-Pi \log^1 , WANG Mei 1 , ZHONG Chuan-Fei 2

- 1 College of Horticulture, Agriculture University of Hebei, Baoding 07100 1, China
- 2 College of Biology, Beijing Forestry University, 100083, China

Abstract In the relationship between photosynthesis and environmental factors or biochemical factors or between stomatal limitation and non-stomatal limitation in depression of photosynthesis at noon, photosynthetic simulations by a mathematical model (a regression equation between net photosynthetic rate (Pn) and intercellular CO_2 concentration (Ci) or other environmental factors including photosynthetic available radiation (PAR), air temperature (Ta), ambient CO_2 concentration (Ca) and relative humidity (Hr)) or FvCB model (Farquhar-von Caemmerer-Berry biochemical model of leaf photosynthesis) were analysed. The model examined the response curve of net photosynthesis (Pn) and intercellular CO_2 concentration (Ci) measured under treatments of combined photosynthetic available radiation (PAR) and leaf temperature (Tl), over a photosynthetic diurnal course measured under CO_2 enrichment in greenhouse microclimates on eggpl

扩展功能

- 本文信息
- ▶ Supporting info
- ▶ [PDF全文](448KB)
- ▶[HTML全文](0KB)
- ▶参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶ Email Alert
- ▶文章反馈
- ▶ 浏览反馈信息

相关信息

▶ 本刊中 包含"日光温室,茄子,CO2 施肥,光合日变化,光合生化模型"的 相关文章

▶本文作者相关文章

- 高志奎
- 高荣孚
- 何俊萍
- 王梅
- 钟传飞

ant (Solanum melongena L.) F_1 hybrid 'QIEZA-1'. The parameters of Pn, PAR, Ta, Tl (lea f temperature), Ca, Ci and Hr were measured with a CI-301PS photosynthesis analyzer. In term s of either response of Pn on Ci or photosynthetic diurnal course, the mathematical model imitate d measured Pn much better than the FvCB model. The simulation by the mathematical model indi cated that photosynthetic diurnal course could be influenced by both a single environment factor a nd complex ones. The simulation of the FvCB model showed that a dominant role of the rate of c arboxylations changed from one to another among A_c , A_i , and A_p as C_i increased combined wit h increase of PAR and Tl. A_c was limited by the amount, activation state and kinetic properties o f ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco). A_i was limited solely by the rate o f ribulose-1,5-bisphosphate (RuBP). A_p was limited by the rate of triose-phosphate utilisation (TP U). $C_i c_j$, intercellular CO₂ concentration of the change point of dominance from A_c to A_j , was a h igher under high PAR and Tl than low PAR and Tl. $C_{i\ cj}$ and $C_{i\ jp}$, intercellular CO_2 concentration n of the change point of dominace from A_i to A_p , was influenced more strongly by Tl than PAR. T he FvCB model also indicated that the limiting carboxylation rate was A_i in the early morning and t oward evening, and it was A_c in the late morning and at noon. Period of A_i limitation might be exte nded by cloudy weather and CO_2 injection once per day. A_p limitation occurred with applicatio n of CO₂ injection twice a day.

 Key words
 greenhouse
 eggplant
 CO2
 enrichment
 photosynthetic
 diurnal
 cours

 e
 biochemical
 model
 of
 leaf
 photosynthesis

通讯作者 高志奎 zhkgao@163.com