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Abstract

We study the spatial and seasonal variability of phytoplankton biomass (as phytoplankton color) in relation to
the environmental conditions in the North Sea using data from the Continuous Plankton Recorder survey. By
using only environmental fields and location as predictor variables we developed a nonparametric model
(generalized additive model) to empirically explore how key environmental factors modulate the spatio-temporal
patterns of the seasonal cycle of algal biomass as well as how these relate to the ,1988 North Sea regime shift.
Solar radiation, as manifest through changes of sea surface temperature (SST), was a key factor not only in the
seasonal cycle but also as a driver of the shift. The pronounced increase in SST and in wind speed after the 1980s
resulted in an extension of the season favorable for phytoplankton growth. Nutrients appeared to be unimportant
as explanatory variables for the observed spatio-temporal pattern, implying that they were not generally limiting
factors. Under the new climatic regime the carrying capacity of the whole system has been increased and the
southern North Sea, where the environmental changes have been more pronounced, reached a new maximum.

Climate change is one of the most important environ-
mental issues that the Earth, and the ocean in particular,
are facing this century (Intergovernmental Panel on
Climate Change 2007). In order to better adapt to the
consequences of climate change on the ocean, improved
knowledge of how climate controls the base of marine food
webs is needed, because this is the first level of interaction
between climate and ecosystems. One way to gather such
knowledge is by developing statistical models able to
reproduce the observed dynamics of phytoplankton. Such
models enable an evaluation of how the environment
regulates the productivity of marine systems and, in due
course, how the entire ecosystem might be affected.

Long-term biological data are essential for this purpose
and must also have sufficient spatial extent to detect
different regional responses. The Continuous Plankton
Recorder (CPR) survey is the only long-term biological
monitoring program that gives a systematic coverage of the
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North Sea in space and time (Edwards et al. 2001). In this
study we focus on the Phytoplankton Colour Index (PCI),
a semi-quantitative in situ measurement of surface phyto-
plankton biomass, with a methodology that has remained
consistent since at least 1948 (Reid et al. 2003).

Despite its relatively small size, the North Sea (Fig. 1)
shows great geographic variability due to the combination
of both a highly enclosed location (which enhances the
continental influence) and a changing bathymetry. This, as
illustrated in Fig. 1, results in a rich toponymy, unlike
many other seas where the different areas are referred to by
alluding to their geographic location (south, north,
northeast, etc.). For the most part, the sea lies on the
European continental shelf, being relatively shallow in the
south (,50 m). In the central-south, extensive sandbanks
are found on the Dogger Bank. A sandy, shallow bottom
together with a location in the middle of the sea away from
coastal influence ensures that Dogger Bank waters are
clear, particularly when compared to the turbid coastal
regions of the German Bight, Wadden Sea, and Southern
Bight. To the north, beyond the Orkney Islands and
Shetlands Isles, the North Sea opens to the eastern North
Atlantic. On its eastern margin the Norwegian Trench
extends down to .300 m and opens in a widening funnel
shape to the Norwegian Sea, and in the south via the
Skagerrak to the Baltic Sea. This great bathymetric and

geographic heterogeneity is reflected in its hydrography
and in turn in plankton abundance and distribution (see
PCI climatology in the Web Appendix, www.aslo.org/lo/
toc/vol_54/issue_2/0512a.pdf), making the North Sea a
challenging ecosystem to study and to model.

The North Sea also provides a unique example of an
ecological regime shift recorded over a large area (Reid et
al. 2001). This abrupt change, which took place in the late
eighties, was first described for the phytoplankton using the
same PCI database as for this study (Reid et al. 1998). The
description, causes, and consequences of this shift have
generated an extensive body of literature (see review by
Beaugrand 2004). However, to our knowledge, none of
these studies have focused on the relative importance of
different environmental forcing mechanisms at the same
time as explicitly including a spatial perspective. To explain
the causal links leading to the biological shift a new
modeling approach to the CPR data has been applied in
this study. The aim was to develop a statistical model
capable of reproducing the observed spatial pattern of the
PCI seasonal cycle in the North Sea and at the same time
use the statistically derived insight to deduce the structuring
effects of the environment. The analysis of changes in
environment–phytoplankton interactions was divided in
three parts: (1) The annual cycle was modeled based on all
the historical data (1948–2004), including location and

Fig. 1. The North Sea PCI. Spatial distribution of the annual-averaged Phytoplankton Colour Index (PCI) in the North Sea from
WinCPR (version 1.1). The data grid is based on a Mercator projection of a half-degree latitude 3 1u longitude and, thus, not a 1 : 1 equal
area projection. The names of the different areas are shown.
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environment as predictors. This spatio-environmental
model was used to explore how mean environmental
conditions regulate the seasonal cycle of phytoplankton.
(2) The model output was then compared to two new model
runs, one including only spatio-temporal and the other only
environmental variables. (3) Repeating the same analysis as
for 1, we approached the regime shift issue by dividing the
whole series into two periods, pre- and post-regime shift.

Methods

The Phytoplankton Colour Index—The PCI is an estimate
of phytoplankton biomass that is based on the color that the
accumulation of green chlorophyll pigments gives to the CPR
filtering silk (Batten et al. 2003a). As such, PCI is a unique
measurement of phytoplankton biomass, because small
phytoplankton cells (e.g., unarmored flagellates, which tend
to disintegrate when they contact formaldehyde) that cannot
be counted under the microscope contribute to the coloration
of the filtering silk (Batten et al. 2003b). Although it is a good
general biomass proxy (representing the standing stock, not
primary production rate), it cannot be used to distinguish
between the relative abundance of diatoms and dinoflagel-
lates over time.

The PCI is a categorical index determined on the silk by
reference to a four-rank standard color chart. These four
categories of PCI are then assigned numerical values (0, 1,
2, 6.5) on a ratio scale based on acetone extracts
(Colebrook and Robinson 1965). Although it is a proxy
for chlorophyll, the PCI is not a proper chlorophyll
measure. Because this is not a mechanized method, but
done by analysts, there might be some degree of
subjectivity. Also, its ‘semi-quantitative’ condition with a
large difference between the top category (6.5) and the next
one (2) might make interpretation of the data difficult at
times. Nevertheless, two separate comparisons between the
PCI and surface chlorophyll a (Chl a) estimated by the
SeaWiFS satellite, showed good agreement (Raitsos et al.
2005; McQuatters-Gollop et al. 2007). Most importantly,
the PCI is the only long-term proxy for algal biomass going
back to the late 1940s, long before accurate satellite
measurements started in 1997 (i.e., SeaWiFS).

The PCI was extracted directly from WinCPR (version
1.1; Sir Alister Hardy Foundation for Ocean Science), a
software package that provides a gridded integration of
CPR data for the North Sea on 183 pixels, each one
covering an area of 1u longitude by 0.5u latitude (http://cpr.
network-research-group.org/). Full details of the operation
of the CPR have been published extensively elsewhere
(Batten et al. 2003a). The WinCPR gridded spatial
interpolation was performed using the Inverse Square
Distance method (ISD). This implies that the weights of the
samples used to calculate each pixel value are inversely
proportional to the squared distance from the point being
estimated. The ISD parameters were optimized for the
North Sea to find the best compromise between the number
of CPR samples per month and the need to keep the
missing pixels to a minimum. Briefly, the maximum
distance was selected at 162 nautical miles and the
minimum number of neighbors used in the estimation of

each pixel was set to 5 and the maximum to 15. The
accuracy of the interpolation was validated through a
comparison with previous analysis of CPR data (Vezzulli et
al. 2007). The advantages of using a gridded database are
obvious; however, it has also disadvantages, the most
important of them being the spatial dependency of the
samples (see The analysis). The time series (1948–2004)
were averaged per month in order to get the seasonal
distribution (12 months) for the 182 pixels (pixel 87 was not
used because it contained no information). For the pre- and
post-shift models, the seasonal averages were calculated
using the values either before or after (and including) year
1988, because this is the year when the shift occurred in PCI
(Reid et al. 1998; Beaugrand 2004). The total number of
samples used in the WinCPR calculation ranged from ,700
samples to ,1300 samples per year. The total number of
samples during the two periods was: 38,632 samples for the
preshift (1948–1987; 40 yr) and 15,928 for the post-shift
(1988–2004; 17 yr), which gives a very similar average
number of samples per year, 966 and 937 pre- and post-
shift respectively. Therefore, the sampling intensity can be
considered as balanced over the two periods.

The variables—Sea surface temperature (SST; uC) data
were obtained from the British Atmospheric Data Centre;
HadISST 1.1 dataset (http://badc.nerc.ac.uk/home/). Sur-
face downward solar radiation flux (SOL; W m22) and
wind speed (WND; m s21) data (National Centers for
Environmental Prediction Reanalysis data set) were ob-
tained from National Oceanic and Atmospheric Adminis-
tration/Office of Oceanic and Atmospheric Research/Earth
System Research Laboratory Physical Sciences Division,
from their web site at http://www.cdc.noaa.gov/. The solar
radiation flux was estimated at the bottom of the
atmosphere (Kalnay et al. 1996) and, therefore, is
considered as the radiation received at the Earth’s surface
(taking into account calculated cloud coverage). These
three variables consisted of a gridded time series matching
the PCI time span (1948–2004).

Mixed layer depth (MLD) data were obtained from the
project Ocean Mixed Layer Depth Climatology (http://
www.lodyc.jussieu.fr/,cdblod/mld.html). The MLD has
been calculated based on high vertical-resolution hydro-
graphic profiles available since 1941 through 2002 (Mon-
tégut et al. 2004). The nitrate (NO3) climatology was
calculated using field observations from the International
Council for the Exploration of the Sea (ICES) Oceano-
graphic Database (http://www.ices.dk/ocean/) covering the
period 1960–2006. Both MLD and NO3 climatologies
include observations before and after the shift and overlap
well the CPR temporal span (1948–2004).

Apart from these variables, which were input to the
models, some others (see below) were also tested, but not
used because they were not significant. These included
bathymetry from the General Bathymetric Chart of the
Oceans (http://www.ngdc.noaa.gov/mgg/gebco/gebco.
html), the Simpson Hunter stratification parameter (a
proxy for tidal-induced turbulence) from Pingree and
Griffiths (1978) and phosphate concentration from the
ICES Database.
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All the environmental variables were spatially interpo-
lated to the same pixels used in WinCPR (1.1) and
subsequently averaged by month (when it was not already
a climatology) in the same way as was done with the PCI
data.

The analysis—To build the seasonal model we used the
PCI as a response variable, with covariates being the grid
sample position (defined by longitude and latitude) as well
as the different environmental variables (described above).
Because no lag was used, the PCI was regressed against the
monthly environmental conditions. The regression analysis
was performed using nonparametric Generalized Additive
Models (GAM; Hastie and Tibshirani 1990; Wood 2006) as
used in Stenseth et al. (2006).

Specifically, let PCIm,(l,Q) be the log + 1–transformed PCI
at longitude l and latitude Q for the 12 months (m), and
SOL, SST, WND, MLD, and NO3 the co-located
environmental variables to give the following model:

PCIm, l,Qð Þ~azs l,Qð Þzg1 SOLm, l,Qð Þ
� �

zg2 SSTm, l,Qð Þ
� �

zg3 MLDm, l,Qð Þ
� �

zg4 WNDm, l,Qð Þ
� �

zg5 NO3m, l,Qð Þ
� �

zem, l,Qð Þ

ð1Þ

where a is an intercept, s and gs are nonparametric smooth
functions (two-dimensional and one-dimensional respec-
tively) describing the effect of location and environment on
the PCI, and em,(l,Q) is a random error assumed to be
normally distributed with zero mean and finite variance.
The two-dimensional (or spatial) effect was fitted with thin
plate splines while the one-dimensional effects were fitted
by natural cubic splines (Wood 2006).

Model selection was based on a stepwise approach,
aimed at removing covariates with a p-value . 0.05 and
minimizing the generalized cross-validation (GCV) criteri-
on of the model (Wood 2000). The GCV criterion is a
measure of the out-of-sample predictive performance of the
model, and it is related to Akaike’s Information Criterion
(AIC; Wood 2006).

The above formulation corresponds to the best spatio-
environmental model, in which all predictor variables had
significant effects (see Table 1). Apart from these variables,
the surface concentration of phosphate, the bottom depth,
and the degree of tidal mixing were tested but excluded
because they did not prove to be significant in the model.

The residuals did not show temporal dependency but were
spatially correlated. This results in an overestimation of the
significance level of the covariates and, therefore, invalidates
the standard p-values. To get an accurate estimate, the latter
were computed using a wild bootstrap approach (Mammen
1993) which accounted for the spatial autocorrelation.
Specifically, for a given fitted model: (1) the residuals were
extracted, (2) rescaled, to have the same variance as the
estimated scale parameter of the model, (3) their signs
randomly inverted before being (4) used as a response
variable in a model (having the same set of covariates as the
original model), and finally (5) steps 3–4 were repeated 1000
times. To account for the spatial correlation, all residuals for
a given month in a given bootstrap sample were either
inverted or not with probability 0.5 (Davison and Hinkley
1997). We thus obtained a reference distribution of the F-
ratio for each covariate for the null scenario of no covariate
effects. The bootstrap estimate of the p-value for a covariate
was calculated as the percentage of the reference F-ratios (out
of the 1000 bootstrapped F-ratios) that were larger than the

Table 1. Generalized Additive Model (GAM) results. Intercept, estimated degrees of freedom (edf) and significance (p-value) of the
spatial and environmental covariates for the whole-series, preshift, and post-shift GAMs. The p-values (and standard errors of the
intercept) were calculated from bootstrapping. Although the number of edf for wind speed in the whole-series model is one of the highest,
suggesting a strong nonlinear response to this variable, the partial residual plot (Fig. 2) indicates that its effect is monotonically increasing
and nearly linear. But constraining the wind effect to be linear yields a slightly worse fit (R2 5 0.861; generalized cross-validation [GCV]
score: 0.0184), so the original variable was retained.

Whole-series Preshift Post-shift

Estimate p-value Estimate p-value Estimate p-value

Intercept 0.7096 ,0.001 0.6060 ,0.001 0.9171 ,0.001
SE 60.0084 60.0110 60.0091

edf p-value edf p-value edf p-value

(Long, Lat) 27.062 ,0.001 21.419 ,0.001 23.465 ,0.001
SOL* 4.000 ,0.001 4.000 ,0.001 3.929 ,0.001
SST{ 3.854 ,0.001 3.906 ,0.001 3.768 ,0.001
MLD{ 3.977 ,0.001 3.988 ,0.001 3.918 ,0.001
WND1 3.747 0.024 3.640 0.021 - -
NO3I 3.635 0.028 3.840 0.082 3.533 0.003

R250.862 R250.820 R250.858
GCV50.0183 GCV50.0250 GCV50.0198

* Solar radiation flux.
{ Sea surface temperature.
{ Mixed layer depth.
1 Wind speed.
I Nitrate.
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observed F-ratio. Confidence limits for the partial effects of
the covariates were calculated similarly to above, except that
the rescaled and randomly inverted residuals were added
back to the fitted values before fitting the model in step 4.

An alternative to using wild bootstrap is to incorporate
the spatial correlation in the model. This approach,
however, suffers from two difficulties: the spatial correla-
tion structure is often unknown and hard to specify
empirically, and the required statistical methodologies for
model fitting and diagnostics are still undergoing intensive
development and are not ready for application (Wood
2006). Fortunately, the objects of interest here are the
additive regression effects. The spatial correlation is a
nuisance feature whose omission from the model does not
bias the estimation of the additive regression effects but
only requires the wild bootstrap to validate their inference.

As explained in the introduction three sets of models
were run: (1) whole-series, (2) preshift, and (3) post-shift.
For the first model, average climatologies were calculated
for the whole study period (1948–2004). For the latter two
models, the original datasets were split into two periods:
preshift (1948–1987; 40 yr) and post-shift (1988–2004;
17 yr) from which the spatial climatologies were subse-
quently calculated. For the depth of the mixed layer and
the nutrients it was not possible to get preshift and post-
shift climatologies with the same spatial resolution due to a
lack of data. Therefore, the same climatology was retained
for these variables in all the models. Note that by doing so
we are assuming that these two variables have remained
constant over the years. However, because we lack any
other information, fixing these effects is the best approach
to explore differences in the variables that can be shown to
change over the two periods.

To evaluate the suitability of this modeling approach
(which combines geographic and environmental variables,
as specified in formula 1) to reproduce complex spatial
patterns, we compared it with two alternative model
formulations (formulas 2 and 3). Formula 2 describes a
spatio-temporal model that includes the effect of location
(i.e., the spatial effect) and 12 monthly factors as covariates
(i.e., the intercept is allowed to change with the month). In
this second formulation, Mi are the dummy variables for
the 12 months and ais are the monthly effects.

PCIm, l,Qð Þ~
X12

i~1

aiMizs l,Qð Þzem, l,Qð Þ ð2Þ

Formula 3 describes an environmental model that
incorporates all the climatological and physical variables,
including depth (DEP) or tidal mixing (TID), but no
geographical smoother (i.e., no spatial effect):

PCIm, l,Qð Þ~azg1 SOLm, l,Qð Þ
� �

zg2 SSTm, l,Qð Þ
� �

zg3 MLDm, l,Qð Þ
� �

zg4 WNDm, l,Qð Þ
� �

zg5 NO3m, l,Qð Þ
� �

zg6 DEP l,Qð Þ)
� �

zem, l,Qð Þ

ð3Þ

GAMs enjoy the advantage of being nonparametric (i.e.,
there is no need to a priori specify the functional forms

between the response and the explanatory variables),
although it requires the covariate effects to be additive.
This characteristic gives great flexibility to approximate the
true relationships between the variables because we let the
data tell us what these functional forms look like. Indeed,
each function estimate is a natural cubic spline (Wood
2006; i.e., a function consisting of piecewise cubic
polynomials pasted together so that the function is twice
continuously differentiable, with the function itself being
linear in the tails). The points where the cubic polynomials
meet are called knots, the number of which generally
increases with the sample size. Although the natural cubic
spline function estimates can be written out in formulas, the
formulas are hard to interpret and so, instead, the functions
are plotted to reveal their general features. In summary, a
fitted GAM has a very complex model formula that can be
useful for computing fitted values and prediction, but, in
terms of interpretation, it is best presented pictorially by
plotting the graphs of its component functions. Often based
on the estimated function shapes of a fitted GAM, a
parametric model may be suggested. In the Web Appendix,
a parametric approximation (second-order polynomial
regression) is fitted and the coefficients are given because
these could be useful for other authors.

All the calculations and models, including the processing
of the variables and the plots, were coded in R (version
2.5.1; R Development Core Team 2007). The packages used
were mgcv (Wood 2006) and RColorBrewer (Neuwirth
2007).

Results

Alternative formulations—Using time and location as
predictors (model formulation 2) is useful to produce
summaries of the PCI but it tells us little about the
causative mechanisms. The output from a purely environ-
mental model (model formulation 3) is scientifically more
meaningful but we usually do not have all the necessary
independent variables to satisfactorily explain the observed
dynamics. The spatio-environmental model (model formu-
lation 1) provides a good compromise between the latter
because the spatial term collects the variance not explained
by the environmental conditions studied here. Moreover, a
statistical comparison among them also supports the better
performance of the spatio-environmental model. Specifi-
cally the R2 and GCV values of these models are both
worse (lower and higher, respectively) than the R2 and
GCV of the selected model shown in Table 1 (spatio-
temporal model: R2 5 0.79, GCV 5 0.028, environmental
model: R2 5 0.71, GCV 5 0.038). Therefore, the results
showed in this section come from the spatio-environmental
model.

However, the information provided by the alternative
‘pure’ models is also informative, particularly for compar-
ison purposes, and can be found in the Web Appendix. It is
worth mentioning that when the spatial smoother is not
used, the bottom depth or the degree of tidal mixing
become significant in the model. This could be seen as an
indication that the spatial baseline is, to some degree,
accounting for these effects (and others not explored).
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The whole-series spatio-environmental seasonal model is
described first and then compared with the pre- and post-
shift models to see divergences in this general pattern
before and after the regime shift.

Spatio-environmental model for the whole series—This
general annual-cycle model explained .85% of the total
variance with all the covariates being significant, see
Table 1 (left column). Stepwise deletion of covariates
allowed us to estimate the variance contribution of the
various covariates (Table 2). Nitrate, although significant,
seems to contribute the least to the explained variance
(,1%). Wind speed does not contribute much either
(,2%), while the spatial term and light are the covariates
that explain the most.

Spatial pattern: A combined spatio-environmental ap-
proach, as we chose here (formulation 1), allows us to
account for a ‘baseline’ spatial distribution assuming no
effect of the environment or season. Because month is not
used as a predictor variable, it is only the additive effect of
the various environmental variables upon this spatial
pattern that gives rise to the seasonal cycle (see observa-
tions vs. predictions for the different month in the Web
Appendix). As such, this spatial pattern may not have ever
been observed in nature. It summarizes the variability left
over by the selected environmental covariates and, there-
fore, can be used to explore the areas where this
unexplained variance is more or less important (i.e., areas
where the studied environmental factor satisfactorily
explain most of the variance and areas where there must
be other factors not included in the model). The average
spatial distribution (Fig. 2) shows increasing levels towards
the south-eastern coastal regions. The highest concentra-
tions are found in the Southern Bight and the Wadden Sea,
with a maximum centered at the German Bight, where it
deviates +0.8 over the mean. The rest of the North Sea is
characterized by a tongue of below-mean concentrations
emanating from the northern North Sea in a southeasterly

direction to the coastal water just north of the Wadden Sea.
This tongue-shaped region occupies about two-thirds of the
total surface and is bounded by the slightly richer coastal
areas off Scotland, England and Norway.

Environmental effects: The SOL has a very strong
nonlinear effect on the PCI concentration (spanning the
widest range; Fig. 2). Up to about 300 W m22 increasing
light is associated with increasing PCI. Above this value
increased light has no additional, or possibly even a
negative, effect on PCI. Temperature (SST) has a nonlinear
effect being positive up to about 11uC, above which
increasing temperature does not lead to increased PCI.
These saturation or decline effects for the upper ranges of
SOL and SST could be indirectly summarizing the effect of
other factors, such as nutrient depletion.

The effect of the MLD is strongly nonlinear, showing the
highest PCI values at a MLD of around 50 m. There is a
positive and almost linear effect of wind (WND; Fig. 2).

Nitrate did not have a strong statistical effect on the PCI
seasonal cycle although entering significantly in the model.
The highest PCI is found at intermediate nitrate concen-
trations.

Preshift and post-shift 1988—Summaries of the model
results are shown in Table 1 (middle and right columns).
The first and most noticeable change is the overall increase
in the color mean level (intercept), which changed from
0.61 (60.01 SE) to 0.92 (60.01 SE.) after the regime shift,
corresponding to an increase of .65%, but there have also
been changes in the spatial distribution.

Spatial pattern: In the whole-series model, the geograph-
ic effect showed a mid-sea decrease compared to the coastal
areas at both sides of the North Sea. In both the pre- and
post-shift models, no such mid-sea decrease is shown by the
geographic term (Fig. 3). Instead, the distribution of
isolines is more fan-shaped, resembling a bunch of spokes
coming out from Norway towards the south and south-

Table 2. Variance contribution of the covariates. Coefficient of determination (R2), general cross validation score (GCV) and
percentage of variance (%) accounted by the different models after deletion of one covariate. The left columns show these values for the
models after stepwise deletion of the covariates listed to the left (first NO3, then WND, etc.). The last two models included only one
variable: either space or SOL. For the right columns one covariate (those listed to the left) was removed at a time while keeping all the rest
(i.e., with replacement).

Stepwise deletion Delete-one-covariate

R2 GCV % R2 GCV %

All 0.862 0.0183 0.862 0.0183
NO3* 0.857 0.0188 0.58 0.857 0.0188 0.58
WND{ 0.844 0.0205 2.09 0.850 0.0198 1.39
MLD{ 0.768 0.0304 10.90 0.809 0.0252 6.15
SST1 0.660 0.0444 23.43 0.787 0.0281 8.70
Long, Lat 0.483 0.0670 43.97 0.710 0.0379 17.63
SOLI 0.228 0.1005 73.55 0.767 0.0307 11.02

* Nitrate.
{ Wind speed.
{ Mixed layer depth.
1 Sea surface temperature.
I Solar radiation flux.
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west, reflecting gradually lower color levels as one goes
northwestwards in the North Sea. After 1988, this pattern
is altered with a belt of low values (between the 0.8 isolines)
extending from the western coast of Norway to Scotland.
The area of minimum values thus seems to have moved
south by 1–2u after 1988, from 61–62uN to ,58uN off
Scotland to ,60uN off Norway (see 0.75 isoline).

Environmental effects: Regarding the effect of the
environment, there are also slight differences before and
after the shift (Fig. 4). Before 1988, increasing light led to
increasing PCI even at the lowest light levels, while after
1988, the increase for the lower range was much lower
(almost flat below 100 W m22). On the other hand, above
,300 W m22, increasing light prior to 1988 led to a
sharper reduction in PCI than after 1988.

Temperature is the environmental variable whose effect
changed the most. In the preshift period we found a
positive effect of increasing SST up to about 10uC and a
negative effect above this, while after 1988 the magnitude
of the temperature effect is smaller and increasing SST

above about 10uC does not lead to reductions in PCI. It is
worth noting that this variable is also the one that
experienced the most pronounced change in range of
values with a general increase (see x-axis ranges in Fig. 4).

The effect of wind was found to be plateau-shaped above
6 m s21 for the pre-1988 period (in contrast to the linear
shape for the whole-series model), but did not enter
significantly in the post-shift model.

Because comprehensive long-term MLD and nitrate data
are not available on a broad spatial scale for the North Sea
it was not possible to examine possible changes before and
after the shift, as done with SST or SOL. Their effects in the
pre- and post-shift models (not shown) did not vary much.

Environmental changes after 1988—To better interpret
the adjustments found in the environmental regulation of
phytoplankton color it is worth looking at the spatial
changes in environmental conditions following the regime
shift. Fig. 5 shows the difference between the annual mean
post-shift and preshift conditions for the algal biomass
index and the various environmental variables discussed

Fig. 2. Spatial and environmental effects. Spatial contours of the PCI as estimated by the whole-series spatio-environmental model.
The small dots are the centers of the pixels shown in Fig. 1. The 95% upper (red) and lower (green) confidence intervals were calculated
from bootstrapping. Partial plots of the environmental covariates selected by the whole-series seasonal model: Solar radiation (SOL), sea
surface temperature (SST), mixed layer depth (MLD), wind speed (WND), and nitrate (NO3). The y-axis indicates the partial additive
effect that the term on the x-axis has on the PCI. The numbers in parentheses on the x- and y-axes indicate the estimated degrees of
freedom, which are also shown in Table 1. The 95% confidence intervals were calculated from bootstrapping and are shown in grey. Note
that the scale of the x-axis for nitrate is different from the rest.
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above. All the variables showed considerable changes,
either in magnitude or in spatial pattern.

Overall, phytoplankton color increased all over the North
Sea. However, this increase was much less intense off the
coasts of Scotland and England, in particular between
Aberdeen and the Humber estuary where the increase was
below +0.3. Specifically, this area is characterized by an
important decrease in the surface solar radiation (darkening)
which could have contributed to this moderate increase
(Fig. 5, bottom left plot). In fact, light is the only variable
that diminished in intensity over a significant area after 1988.
Both temperature and wind increased, although in a different
spatial pattern. The changes in temperature show a clear
north–south gradient, peaking in the Southern Bight where
its increase was close to 1uC while wind speed increased
mostly in the north and the south.

Discussion

Although there have been .1000 publications using the
CPR data (htp://www.sahfos.ac.uk/bibliography.htm),
there has been limited work on the evaluation of
relationships between plankton dynamics and environmen-
tal variables (Edwards et al. 2002; Beaugrand 2004;
Weijerman et al. 2005). The need to develop new
methodologies to further explore this field, pointed out
by Beaugrand et al. (2003), is currently growing with the
increasing pressure for a more ecological approach to
marine fisheries and environmental management.

Recently, McQuatters-Gollop et al. (2007) have used
linear models to examine the relative importance of the

various hydro-meteorological variables on the phytoplank-
ton biomass in the North Sea, while Raitsos et al. (2006)
have used GAMs to explore the bloom size variation of
coccolithophores in the subarctic North Atlantic. These
two studies provide interesting results on the structuring
effect of the marine environment. However, the spatial
perspective has not been explicitly incorporated yet in the
models.

In this study, we have explored the effect of the spatial
position together with the environmental condition on the
seasonal patterns of phytoplankton biomass in the North
Sea via the framework of Generalized Additive Models
(Hastie and Tibshirani 1990). One of the advantages of this
nonparametric regression technique is that there is no need
to a priori specify the functional form between the response
and the explanatory variables. By using smoothers, we let
the data tell us what this relationship (if any) looks like.
This flexibility ensures an optimal empirical approach when
aiming to infer causal relationships between two variables.

The results from our model show that the combination
of a spatial term with the various physical and climatolog-
ical variables (solar radiation, sea surface temperature,
mixed layer depth, wind speed, nitrate concentration)
successfully accounts for most of the variation in the
North Sea of the subsurface spatial patterns in the seasonal
cycle of the phytoplankton standing stock.

However, not all the variables have the same importance
in driving the phytoplankton cycle. Light (SOL) was
revealed as the most important environmental factor, well
ahead of temperature or the depth of the mixed layer
(Table 2). This covariate showed a strong nonlinear

Fig. 3. Spatial effect - pre- and post-shift models. Spatial contours of the PCI concentration as estimated by the preshift (left) and
post-shift (right) models. The value of the intercept has been added to the spatial effect in order to also show the increase in the mean
level. The small dots are the centers of the pixels shown in Fig. 1. The numbers in parentheses on the top axes indicate the estimated
degrees of freedom of the thin plate splines. The 95% upper (red) and lower (green) confidence intervals for the partial spatial effect were
calculated from bootstrapping.
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positive effect, with increasing values of light resulting in
increasing PCI, until it exceeds 350 W m22. After this
inflexion point its effect reverses (Fig. 2). These high values
of light are found all over the North Sea from May to July,
just at the time when the low PCI tongue reaches its
maximal spatial extent, stretching all the way from the
central to the northeastern North Sea. The rest of the year,
increasing light leads to increasing PCI all over the North
Sea.

Despite the recognized and well-known effect of light on
phytoplankton growth (Sverdrup 1953; Letelier et al. 2004),
its effect in relation to the regime shift has not yet been
discussed (Beaugrand 2004). The main differences in the
response of phytoplankton to solar radiation before and
after the shift (Fig. 4) are found at the ends of the
distribution (SOL ,100 W m22 and SOL .350 W m22).
For the lowest values (Oct–Feb), in the post-shift dynamics
there is a much less intense positive response by the
phytoplankton to increasing light levels compared to the
clear effect before 1988. This attenuation is probably a
result of the general increase of PCI and its reduced
latitudinal spatial heterogeneity from October to February
(see Web Appendix). Note that the partial plots refer to

deviations from the mean level, accounted for by the
corresponding intercepts in Table 1.

On the other hand, the summer PCI increase in the
coastal seas from Skagerrak to the Southern Bight could
explain the reduced negative effect of light in the upper
range. Based on a study of Secchi depth time series (Aarup
2002), McQuatters-Gollop et al. (2007) reported an
improvement in water transparency since the mid-1980s.
This reduction in turbidity, and subsequent increase in the
light diffusion in the water column, could have led to a
better use of available nutrients (Pätsch and Radach 1997),
thus allowing a higher production. Moreover, because
production is no longer restricted to the upper surface
layers with highly variable light exposure, the need of the
algae to reduce chlorophyll content to protect against very
high radiation may have been reduced. Secchi depths are
available for the North Sea since the 1970s. However, the
data are temporally and spatially biased with the majority
of samples taken in the Southern Bight, the Wadden Sea,
the German Bight, and the Skagerrak area. This impedes
the use of transparency as a covariate in our analysis
approach and, therefore, its effects must be assessed
indirectly.

Fig. 4. Environmental effects - pre- and post-shift models. Partial residual plots of the environmental effects of solar radiation
(SOL), sea surface temperature (SST), and wind speed (WND) from the preshift (upper row) and post-shift (lower row) models. WND
does not appear in the post-shift model because it was not significant. The y-axis indicates the additive effect that the term on the x-axis
has on the PCI. The numbers in parentheses on the y-axis indicate the estimated degrees of freedom, which are also shown in Table 1. The
95% confidence intervals were calculated from bootstrapping and are shown in grey. The horizontal dashed lines are included for
visual comparison.
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Overall, the amount of solar radiation reaching the
surface of the water has decreased for half of the area of the
North Sea after 1988 (Fig. 5). Interestingly, this darkened
area, which would have experiencing more cloudiness in
recent times, coincides roughly with the area showing the
lowest increase in PCI after the shift (Fig. 5).

Temperature is the environmental variable that has
changed the most in the long-term (from a range of values
between 4.1–16.8uC to 4.9–18.5uC), showing on average an
increase of almost 1uC in the Southern Bight and adjacent
areas after 1988 (Fig. 5). This pronounced increase is even
higher in some of the monthly anomalies, with the highest
increase (1.5uC) occurring in May in the German Bight
(data not shown). In terms of the phytoplankton response,
it means that the lower tail of the SST partial plot no longer
exists in the post-shift dynamics (Fig. 4, middle column).
Moreover, the negative effect for the highest temperatures
has disappeared such that the former Gaussian-shaped
functional relationship becomes more like a saturation
curve. A possible explanation for the attenuation of the
negative effect of high temperatures, which could also be

argued for light, could be a change to a different summer
flora which would be more tolerant to high light and
temperature.

Wind speed (and derivatives, such as turbulence) showed
a significant and positive rather linear effect in the whole-
series model. The intervals of confidence turned out to be
very wide, meaning that there is large uncertainty in the
estimation of this effect. This may be a consequence of the
negative correlation that exists between wind and other
variables (mainly light) that would confound its effect with
the rest of the environmental variables, although the
positive effect in the whole-series model looks very strong.
Accordingly, the increasing wind speed that occurred in the
north and south of the North Sea after the 1980s may have
contributed to the relatively high increase in the PCI that
shows a similar spatial pattern.

Nitrate, although significant, has very little effect on the
PCI while phosphate did not enter significantly. The
statistically small effect of nutrients suggests that these
are not generally limiting factors for phytoplankton in the
North Sea. This result is in good agreement with the study

Fig. 5. Phytoplankton color and environmental anomalies after 1988. Fields of the anomalies (before and after 1988) over the North
Sea for color (PCI), temperature (SST), light (SOL), and wind speed (WND). The maps show the difference between the annual average
after and before 1988. The contour lines divide the whole area in regions of values below and above half of the total increase (for PCI,
SST, and WND, which showed a net increase after 1988) and positive and negative anomalies (for SOL).
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by McQuatters-Gollop et al. (2007), who concluded that
the long-term increase in phytoplankton is unconnected to
nutrients. The authors showed how nutrient concentration
in the North Sea has been declining since the early 1980s
while phytoplankton biomass has continued to increase.
The southern half of the North Sea shows an average
nutrient concentration that is much higher than the
oceanic-driven northern half. In the shallow areas below
56uN nitrate can reach concentrations well above
50 mmol L21, even in summer. Winter nutrient dynamics
only resemble those of the open ocean in the northern and
central regions. In these regions nutrients should be
important, with summer depletion limiting phytoplankton
growth. It is possible that due to a stronger seasonality, the
dynamics of nutrients are well-captured by the other
environmental variables, such as temperature or light.

The highly significant spatial effect (Fig. 2) indicates that
the high phytoplankton densities occurring in the south-
eastern coastal regions are not fully explainable through the
other explanatory variables retained in the model. A
combination of a weak summer stratification and year-
round increased nutrient content due to tidal mixing,
shallowness, and river discharges may be responsible for
the higher algal density in this area. It is worth noting that
this spatial structure reproduces the tidal-mixing field
estimated by Pingree and Griffiths (1978). This was used
as a covariate and was only significant when the location
was not entered, indicating that both variables carry similar
information. On the other hand, observations by CPR
analysts suggest that detrital material (which may or may
not be primarily phytoplanktonic in origin) is frequently
found in southern North Sea samples. The samples often
have a brown or greenish color, and a high PCI, but actual
cell counts are low (Batten et al. 2003b). The presence of
particulate and–or dissolved organic matter is also an issue
when using telemetry because Chl a cannot readily be
distinguished from them (Raitsos et al. 2006). Any of these
proposed explanations (either the interplay of other
physical or environmental processes leading to higher than
average PCI or the ‘contamination’ by detritus) or a
combination of both are accounted for by the spatial term.

The North Sea regime shift, consisting of a rapid
increase followed by a consistently high level of phyto-
plankton biomass, has been described elsewhere (Beau-
grand 2004). However, the spatial changes that accom-
panied the shift have not been investigated. Apart from
the total increase, which agrees well with the 60%
reported by Raitsos et al. (2005); the main difference that
arises from the comparison between the pre- and post-
shift contours is that the spatial pattern passed from a
unimodal to a bimodal distribution after 1988 (Fig. 3).
The common southern local maximum, located in the
German Bight, is accompanied now by another local
maximum east of the Shetland Isles. The inter-regime
increase at this second center of gravity has been of .0.4
units while in the German Bight it was ,0.3. In the
central regions of the North Sea the increase has been
around 0.2 units.

The improvement in transparency and the increase in
temperature, light, and wind in the southeastern North Sea

have probably contributed to the increase in the algal
biomass in this region. In contrast, the development of a
maximum in the northern North Sea requires a different
explanation because transparency is not an issue in the
open sea and the warming has been little compared to the
south (Fig. 5). Solar radiation and wind show up as the
environmental variables that may have contributed the
most because it is in this region where the highest
deviations are found.

To further investigate the effect of the two most
important environmental variables discussed above
(SOL and SST), a simplified formulation of the pre- and
post-shift models was run. In these new models, only the
geographical term and either SOL or SST were entered to
exclude the partial effects of the rest of the environmental
variables (as opposed to the results shown previously).
The predictions of the model against the corresponding
environmental variable are shown in Fig. 6 with different
colors for different regions of the North Sea. Apart from
some of the aspects commented on above, it is worth
noting that in the post-shift dynamics some of the
transects reach a plateau towards the south (represented
by blue and red circles) for increasing values of light but
particularly for increasing values of temperature and in
the north end of the transects (yellow and green circles),
the range of PCI values for varying SST and SOL has
shrunk so that the spatial gradient in this area is less
pronounced now. It seems that after the shift (Fig. 6,
bottom plot), whereas in the central North Sea increasing
light or temperature can still lead to increasing PCI (by
displacing upwards along the range covered by the grey
open circles), in the south and north there are other
factors that hinder this increase (filled circles). These
limiting factors might be nutrients in the north during
summer, where an increase in wind speed could still
enhance the PCI; however, in the south, nutrients are not
considered to be limiting and the tidal forcing keeps the
waters mixed year-round. This region has experienced the
most pronounced warming of the whole sea since the late
1980s and also moderate and pronounced increases in
light and wind respectively. The saturation pattern
displayed by the stations in this area suggests that the
system might have reached here its new carrying capacity,
which is probably still limited by turbidity.

By analyzing the unique PCI data from the CPR survey,
using a spatial nonparametric approach, we show how
surface phytoplankton biomass varies seasonally and
spatially in relation to environmental conditions. Our
results highlight the different nonlinear responses to the
various environmental factors as well as the most
important effects of light and temperature. Increasing
levels of temperature, wind speed, and light seem to have
contributed to the new phytoplankton regime, established
since 1988. The present state may have reached a maximum
in the southernmost areas where increasingly favorable
conditions (out of those studied here) did not lead to a
significant increase of phytoplankton biomass. In contrast
it is expected that the northern North Sea will continue to
respond positively to a warmer, brighter, and windier
future if current trends are maintained.
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