

AMERICAN METEOROLOGICAL SOCIETY

AMS Journals Online

AMS Home

Journals Home

Journal Archive

Subscribe

For Authors

Help

Advanced Search

Search

Abstract View

Volume 8, Issue 2 (March 1978)

Journal of Physical Oceanography

Article: pp. 206–214 | Abstract | PDF (701K)

Oceanic Thermal Response to Strong Atmospheric Forcing I. Characteristics of Forcing Events

Russell L. Elsberry and Norman T. Camp

Naval Postgraduate School, Monterey, Calif. 93940

(Manuscript received March 10, 1977, in final form November 21, 1977) DOI: 10.1175/1520-0485(1978)008<0206:OTRTSA>2.0.CO;2

ABSTRACT

Long time series of meteorological data from Ocean Weather Ships P, V and N in the North Pacific Ocean are used to test the hypothesis that significant oceanic thermal response during September to December occurs in association with limited periods of strong atmospheric forcing. The 3 h forcing is expressed according to recent mixed layer theory in terms of u_*^3 , where u_* is the atmospheric friction velocity, and the upward surface heat flux. About 13% of the largest u_*^3 values contribute 50% of the total u_*^3 , even though the total input is quite different at the three stations. Although the thermal forcing is less skewed, a significant fraction of this flux occurs during a relatively small fraction of the time. Synoptic time scale forcing events are defined as sustained periods of forcing exceeding the long-term mean fluxes for the corresponding period. Between 68 and 77% of the total u_*^3 occurred during the roughly one-third of the time associated with the synoptic forcing events defined in terms of u_*^3 . Like-wise a significant fraction of the September–December sea surface

Options:

- Create Reference
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for:

- Russell L. Elsberry
- Norman T. Camp

temperature change occurred during these events. Both the time and magnitude of the strong atmospheric forcing events can have a significant effect on the September–December evolution of the upper ocean thermal structure.

© 2008 American Meteorological Society <u>Privacy Policy and Disclaimer</u> Headquarters: 45 Beacon Street Boston, MA 02108-3693

DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 amsinfo@ametsoc.org Phone: 617-227-2425 Fax: 617-742-8718 Allen Press, Inc. assists in the online publication of AMS journals.