

AMERICAN METEOROLOGICAL SOCIETY

AMS Journals Online

AMS Home Journals Home

Journal Archive Subscribe For Authors

Help

Advanced Search

Search

Abstract View

Volume 14, Issue 6 (June 1984)

Journal of Physical Oceanography

Article: pp. 1079–1094 | Abstract | PDF (1.13M)

Statistical Characteristics of the Large-Scale Response of Coastal Sea Level to **Atmospheric Forcing**

J.S. Allen and D.W. Denbo

College of Oceanography, Oregon State University, Corvallis, OR 97331

(Manuscript received November 18, 1983, in final form April 5, 1984) DOI: 10.1175/1520-0485(1984)014<1079:SCOTLS>2.0.CO;2

ABSTRACT

As part of a study of the large-scale response of coastal sea level to atmospheric forcing along the west coast of North America during June-September 1973, Halliwell and Allen calculate space- and time-lagged cross-correlation coefficients R_{\perp} between adjusted sea level ζ at fixed alongshore locations $\zeta(y_0)$ and the alongshore component of the wind stress τ at general alongshore positions $\tau(y)$. Similarly, correlation coefficients $R_{\zeta\zeta}$ and $R_{\tau\tau}$ involving, respectively, $\zeta(y_0)$ versus $\zeta(y)$ and $\tau(y_0)$ versus $\tau(y)$ are computed. The $R_{\tau}\zeta$ correlations show a consistent asymmetry in time and space lag (t_I, y_I) , with maximum values of R_{1} found for $\tau(y)$ to the south of $S(y_{0})$ and leading in time. The $R_{\tau\tau}$ correlations are typically symmetric in t_L and in y_L while $R_{\zeta\zeta}$ generally show sea level fluctuations to the south leading those to the north in time. It is shown here that the observed correlation coefficients involving \(\frac{1}{2} \) are consistent with those derived from solutions to the forced, first-order wave equation with

Options:

- Create Reference
- **Email this Article**
- Add to MyArchive
- Search AMS Glossarv

Search CrossRef for:

Articles Citing This Article

Search Google Scholar for:

- J.S. Allen
- D.W. Denbo

a linear friction term where an assumed form of $R_{\tau\tau}$, based on observations, is used as a forcing function. Similar investigations are carried out in the frequency domain where corresponding theoretical space-lagged squared coherences and phases are calculated. Qualitative agreement with observed behavior is obtained in several instances for the space-lagged statistical functions in both time and frequency domains. Additional new results include theoretical expressions for the relation in wind-forced regions of alongshore propagation velocities of $\frac{1}{2}$, determined from lagged cross-correlation coefficients or cross-spectral phase differences between variables at different alongshore positions, to the free-wave propagation speed c, the determination of c from $R \mathcal{L}$, the variation with frequency of alongshore coherence scales of ζ and of coherence and phase between ζ and local τ .

© 2008 American Meteorological Society Privacy Policy and Disclaimer Headquarters: 45 Beacon Street Boston, MA 02108-3693

DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 amsinfo@ametsoc.org Phone: 617-227-2425 Fax: 617-742-8718

Allen Press, Inc. assists in the online publication of AMS journals.