

AMERICAN METEOROLOGICAL SOCIETY

AMS Journals Online

AMS Home Journals Home

ournals Home Journal Archive

ve Subscribe

For Authors

Help

Advanced Search

Search

Abstract View

Volume 14, Issue 4 (April 1984)

Journal of Physical Oceanography

Article: pp. 747–753 | Abstract | PDF (543K)

Pacific and Indian Ocean Upper-Layer Salinity Budget

Alberto R. Piola

Savicio de Hidrografia Naval 1271 Buenos Aires. Argentina

Arnold L. Gordon

Lamont.Doherty Geological Observatory of Columbia University, Palisades. NY 10964

(Manuscript received April 4, 1983, in final form November 7, 1983) DOI: 10.1175/1520-0485(1984)014<0747:PAIOUL>2.0.CO;2

ABSTRACT

The freshwater balance in the upper layer of the Pacific and Indian Oceans is investigated by means of mass and salinity conservation arguments in simple advective box models.

The model uses estimates of atmospheric freshwater input to the ocean and upwelling of deep water into the upper layer at a rate required to balance North Atlantic deep water formation, proportioned by the areas of each ocean. The salinity of the upper layer outflow relative to observed salinity is too low for the Pacific and too high for the Indian Oman. Either the upwelling rates am 5 to 20 times higher than estimated or the freshwater input is grossly exaggerated. The problem is alleviated by taking account of the Pacific-Indian tropical link within the Indonesian Passages of the Southeast Asian Seas.

The role of the Pacific-Indian Ocean equatorial connection (through the Southeast Asian Seas) is tested by dividing the Pacific Ocean basin into three

Options:

- Create Reference
- Email this Article
- Add to MyArchive
- Search AMS Glossary

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for:

- Alberto R. Piola
- Arnold L. Gordon

zones. Meridional mass transports between zones are estimated from the mass and freshwater balances by imposing a uniformly distributed upwelling rate from the deep ocean. From the equatorial zone budget of the Pacific Ocean a flow of 14×10^6 m³ s⁻¹ at 33.6% salinity into the Indian Ocean through the Southeast Asian Seas is required. This transport agrees with that derived from the Indian Ocean null and freshwater balances.

© 2008 American Meteorological Society Privacy Policy and Disclaimer Headquarters: 45 Beacon Street Boston, MA 02108-3693

DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 amsinfo@ametsoc.org Phone: 617-227-2425 Fax: 617-742-8718

Allen Press, Inc. assists in the online publication of AMS journals.