

Volume 15, Issue 5 (May 1985)

Journal of Physical Oceanography Article: pp. 544–565 | <u>Abstract</u> | <u>PDF (1.58M)</u>

Near-Inertial Wave Propagation In Geostrophic Shear

Eric Kunze

Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, WA 98105

(Manuscript received July 10, 1984, in final form January 23, 1985) DOI: 10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2

ABSTRACT

An approximate dispersion relation for near-inertial internal waves propagating in geostrophic shear is formulated that includes straining by the mean flow shear. Near-inertial and geostrophic motions have similar horizontal scales in the ocean. This implies that interaction terms involving mean flow shear of the form $(v \cdot \Delta)V$ as well as the mean flow itself $[(V \cdot \Delta)$ v] must be retained in the equations of motion. The vorticity ζ shifts the lower bound of the internal waveband from the planetary value of the Coriolis frequency *f* to an effective Coriolis frequency $f_e \pi = f + \zeta/2$. A ray

tracing approach is adopted to examine the propagation behavior of nearinertial waves in a model geostrophic jet. Trapping *and* amplification occur in regions of negative vorticity where near-inertial waves' intrinsic frequency & $mega_0$ can be less than the effective Coriolis frequency of the

surrounding ocean. Intense downward-propagating near-inertial waves have been observed at the base of upper ocean negative vorticity in the North Pacific Subtropical Front, warm-core rings, a Gulf Stream cold-core ring

and an anticyclonic eddy in the Sargasso Sea. Waves that are not trapped are focussed into tight beams as they leave the jet.

Options:

- <u>Create Reference</u>
- Email this Article
- Add to MyArchive
- View Correction to this Article
- Search AMS Glossary

Search CrossRef for:

• Articles Citing This Article

Search Google Scholar for:

• Eric Kunze

© 2008 American Meteorological Society <u>Privacy Policy and Disclaimer</u> Headquarters: 45 Beacon Street Boston, MA 02108-3693 DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 <u>amsinfo@ametsoc.org</u> Phone: 617-227-2425 Fax: 617-742-8718 <u>Allen Press, Inc.</u> assists in the online publication of *AMS* journals.