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Abstract 
 
In this part of the study, grid-based spatial water balance approach was used to estimate the 
annual water balance of Devils Lake basin, hydrologically closed lake located in the Red River of 
the North basin, northeastern North Dakota. Landsat images from 1991 to 2003 were used in the 
study. Using spatial precipitation, land-cover and soils data, grid-based surface runoff was 
estimated based on the Curve Number method. The calibrated upstream runoff inflow for each 
grid cell was computed using a 10-m digital elevation model. Spatial evapotranspiration was 
estimated for the study area from remotely-sensed data using a surface energy flux model. The 
spatial water balance for each grid was constructed using grid geographic information system 
(GIS). The modeled average change in storage depth was compared to observed values of the 
lake stage. The grid GIS-based spatial surface water balance predicted the observed values with 
an average error of prediction of 0.12m. With better understanding of the groundwater 
contribution to the water balance, the prediction accuracy can be improved. The study ensures 
the applicability of the technique for surface water budget computation using GIS and remote 
sensing. 
 
(Key Terms: water balance, Devils Lake, remote sensing, GIS, evapotranspiration, runoff, land 
use/land cover) 
 
Introduction 
In this part of the study, a grid-based spatial surface water balance model was constructed using 
geographic information system (GIS) to estimate the different components of the hydrologic cycle 
for the Devils Lake basin. A GIS provides a framework for storing and manipulating spatial data 
and facilitates the modeling on control volumes of various sizes and shapes. Remotely-sensed 
data from Landsat images were used to derive land-cover classes and also compute spatial 
evapotranspiration using surface energy balance approach. Dataset used for both parts of the 
study is reported in Part I of this study. 
 
Remote Sensing Application 
The most promising applications of remote sensing data in hydrologic modeling are the areal 
measurement of hydrometeorological variables such as precipitation, land surface temperature, 
land-cover classes, and vegetation and basin characteristics. Land-cover determination using 
remote sensing is widely used for large watersheds and when land-cover (actual distribution of 
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physical features of land) information is required at times of the year when such data is critical. 
Although remote sensing cannot be used directly to quantify runoff, it can be used to determine 
watershed geometry, drainage network and also hydrologic input parameters such as soil 
moisture or delineated land-use classes that are used to define runoff coefficients.  
 
Land-cover information is used in watershed modeling to estimate the value of surface roughness 
or friction as it affects the velocity of the overland flow of water. It may also be used to determine 
the amount of rainfall infiltration on a surface. The pixel format of digital remote sensing data 
makes it suitable to merge it with GIS. GIS allows for the combination of remotely-sensed data 
with other spatial data forms such as topography, soils maps and hydrologic variables such as 
rainfall distribution and soil moisture. 
 
METHODOLOGY 
The components of the surface water balance and techniques used to estimate each component 
of the water budget is discussed.  
  
Water balance  
  
An annual spatial water balance per pixel is given by equation (1):  
 P + GWin + Qin =  Qout + ET + GWout  ± ΔStorage                                            (1)  
Where P is precipitation, GWin is groundwater recharge, Qin  is discharge entering the cell from 
upstream cells,  Qout  is discharge leaving a cell, ET is evapotranspiration , GWout  is groundwater 
outflow, and ΔStorage is change in storage from previous year. All units are in length or volume. 
 
Precipitation 
Precipitation volume over the basin was determined using the Thiessen polygon method from a 
network of seven rain gages. Thiessen polygons (Figure 2 of part 1) were constructed using grid 
GIS and spatially distributed rainfall volumes for each grid were computed. 
 
Runoff 
Spatially distributed excess precipitation was estimated using the U.S. Department of Agriculture-
Natural Resources Conservation Service (USDA- NRCS) Curve Number (CN) technique. The 
rainfall-runoff equation used by the NRCS for estimating depth of direct runoff from storm rainfall 
(USDA, 1986) is given by 
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 S is related to curve number (CN) by 

  254
CN

25400S −=                                                                   (3) 

where Q is actual direct runoff (mm);  S is watershed storage (mm); P is total rainfall (mm) (P ≥ 
Q). CN is a dimensionless parameter with values ranging from 1(minimum runoff) to 100 
(maximum runoff). 
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CN is determined based on the following factors: hydrologic soil group, land-use, land treatment, 
and hydrologic conditions.  The NRCS runoff equation is widely used in estimating direct runoff 
because of its simplicity and flexibility.  
In USDA-NRCS-CN technique, soils are classified into four hydrologic soil groups (HSGs) (A, B, 
C, and D) according to their minimum infiltration rate, which is obtained for a bare soil after 
prolonged wetting. Soils with HSG of A are sandy with less runoff potential and soils with HSG of 
D are clayey with high runoff potential. Figure 1 shows the hydrologic soils group of the basin. 
To assess the runoff response of the basin as a result of land-cover change using the CN 
technique, a soil GIS coverage showing HSG was obtained from the State Soil geographic 
(STATSGO) database. The vector coverage of the HSG was converted to 30-m grid using GIS for 
spatial overlay of the data with that of the land-cover information. Since the STATSGO database 
has a scale of 1:250,000 and the soil map units identified in the database can have more than 
one HSG, county level soil survey maps were consulted to improve the accuracy of assigning 
HSGs. 
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Figure 1 Hydrologic soils group (HSG) of the basin. 
 
Land-cover for each respective year was derived from Landsat images using the procedure 
discussed in Melesse and Jordan (2002) and Melesse et al. (2003). Figure 2 shows the flow chart 
for mapping of the land-cover.  
Once the spatially distributed excess precipitation was estimated, upstream inflow of runoff to 
each cell was computed using the flow accumulation script of grid GIS tools (ESRI, 2000). This 
estimate was used to compute the net runoff for each cell (Figure 3). 
 
Calibration was done using the Elmore Coulee sub-basin and discharge data from nine isolated 
storms in 1995, 1996, 1998 and 2001. The calibrating sub-basin covers the drainage area flowing 
to Morrison Lake. 
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Figure 2 Flow Chart for Land-Cover Classification Using NDVI and Surface Temperature. 
 
Evapotranspiration (ET) 
Remote sensing based ET estimations using the surface energy budget are proving to be the 
most recently accepted technique for areal ET estimation (Morse et al., 2000).  Surface Energy 
Balance Algorithms for Land (SEBAL) is one of such models utilizing Landsat and images from 
other sensors with a thermal infrared band to solve equation (4) and hence generate an areal 
map of ET (Bastiaanssen et al., 1998a; Bastiaanssen et al., 1998b and Morse et al., 2000). 
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SEBAL requires weather data such as solar radiation, wind speed, precipitation, air temperature, 
and relative humidity in addition to satellite imagery with visible, near infrared and thermal bands. 
SEBAL uses the model routine of Earth Resources and Data analysis System (ERDAS) Imagine, 
image processing software, in order to solve the different components of the energy budget 

equations. Figure 4 shows the evapotranspiration computation flowchart using the surface energy 
flux balance approach.  
 
Figure 3 Flow Chart for Computing Grid-Based Spatial Net Runoff. 
 
 
In the absence of horizontally advective energy, the surface energy budget of land surface 
satisfying the law of conservation of energy can be expressed as, 

GHRLE n −−=                (w/m2)                                           (4) 

where Rn is net radiation at the surface, LE is latent heat  or moisture flux (ET in energy units), H 
is sensible heat flux to the air, and  G is soil heat flux. Energy flux models solve equation (4) by 
estimating the different components separately. Latent heat (LE) was computed as residual using 
the energy balance equation and converted to ET values using latent heat of vaporization. The 
detailed description of the SEBAL model and computation of the model parameters is indicated in 
Bastiaanssen (1995), Bastiaanssen et al. (1998a) and (1998b) and Bastiaanssen (2000). 
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The adaptation of SEBAL for wetlands is reported in Oberg (2004), Oberg and Melesse (2006) 
and Oberg and Melesse (2004). Remote sensing-based ET estimates for each year of study were 
derived from an instantaneous ET at the time of the Landsat pass using four Landsat images per 
season (June, July, August and September). The instantaneous ET was extrapolated to daily and 
monthly values using the average reference ET (ETr) at the time of Landsat pass. Using the 
monthly ET values, seasonal and yearly ET values were estimated. Reference ET is computed 
using the procedure described in FAO-56 (Allen, 1995; Allen et al., 1998). 
 
 

Figure 4 Flow Chart Showing Spatial Evapotranspiration Mapping Using Remote Sensing. 
 
 
Storage 
Once the components of the water budget are estimated for each grid, storage on a spatial basis 
was computed for each grid (Figure 5). 
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RESULTS AND DISCUSSION 
Spatially distributed precipitation, runoff and evapotranspiration were computed for each year of 
study. Results show that in addition to the spatial variation, the annual variation of these 
hydrologic variables is also higher.  
 

Figure 5 Flow Chart for Spatial Storage Computation. 
 
 
Runoff estimation 
Spatially distributed runoff at the pixel level was estimated and calibrated using gauged data from 
Edmore Coulee sub-basin (Figures 6). This sub-basin comprises watershed in the upper basin of 
Morrison Lake. Figure 6a shows daily discharge from the Edmore Coulee gauging station and 
precipitation from the Langdon rain gage station for the 10 year period (1993-2002). The 
calibrating sub-basin has a drainage area of 978 km2 with discharge peaks in spring from 
snowmelt and also in summer from rainfall (Figure 6a). Nine isolated storms (1995, 1996, 1998 
and 2001) were selected for the purpose of runoff calibration (Table 1 and Figures 6b-6e). Runoff 
depths from the CN technique were estimated and compared to the observed values at the 
Edmore Coulee gauging station. Uncalibrated data overestimated the runoff depth. The runoff 
curve numbers were adjusted to reflect actual runoff. 
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Figure 6 Daily Discharge and Precipitation of Edmore Coulee Sub-Basin (A) 1993-2002 
 (B) 1995 (C) 1996 (D) 1998 (E) 2001 
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Table 1.  Runoff Calibration Storms and Runoff Depth 

    Runoff depth (mm) 

Storm #  Date Observed NRCS-CN Calibrated 

1 3/20/1995 34.0 44 37.8 

2 5/15/1995 5.5 8.9 6.4 

3 4/15/1996 35.3 28.3 39.4 

4 5/20/1996 12.3 8.6 8.1 

5 3/25/1998 27.9 36.3 32.7 

6 5/20/1998 4.3 11.1 8.1 

7 6/15/1998 17.3 22.3 20.3 

8 4/10/2001 30.6 27.2 25.5 

9 6/10/2001 8.7 12.3 9.9 
 
Evapotranspiration 
A separate study was conducted at the Glacial Ridge wetland restoration site in Minnesota, 185 
km east of Devils Lake basin, to monitor changes in ET from 2000-2003 using SEBAL approach 
using Landsat TM and ETM+ sensors. The study found the technique to predict the observed ET 
values with an average error of -4.3% (Oberg, 2004; Oberg and Melesse, 2006). 
 
The annual storages for each grid cell were computed using grid GIS (Figure 7). The computed 
change in the average storage volume for the basin was compared to the observed change in the 
lake volume for each respective year. Comparison of the predicted and observed change in 
storage shows little agreement which can be attributed to (1) the observed values were taken 
from a point gauging station measured to the nearest cm, and  (2) the complex hydrologic 
processes of the basin. This can be seen in the years 1997 and 2003, where the precipitation 
volumes were 472 and 481 mm, and the change in the lake’s stage were 1.29 and 0.04 m, 
respectively. Table 2 shows a comparison of change in observed and modeled lake level during 
the years of this study. Results show the modeled change in lake storage under-predicts the 
observed values for 1994 and 1997, suggesting higher lake levels might be resulting from various 
hydrologic processes in addition to the processes and hydometeorological data discussed in this 
Part I of the study. Modeled values from 1991, 2000 and 2003 showed an over-prediction of the 
observed values. The average error of prediction was 0.12 m. 
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Figure 7 Spatial Map of Estimated Storage (A) 1991 (B) 1994 (C) 1997 (D) 2000 (E) 2003. 
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Table 2. Observed and Predicted Change in Lake Storage. 

Year ∆ depth of lake 

  
Observed  
 (m amsl) 

 Predicted 
(m amsl) 

Error 
(m amsl) 

1991 -0.27 0.37 -0.64 
1994 1.52 0.66 0.86 
1997 1.29 0.34 0.95 
2000 0.06 0.35 -0.29 
2003 0.01 0.27 -0.26 
Ave 0.52 0.40 0.12 

 
 
Conclusion 
Remotely-sensed data from Landsat TM and ETM+ sensors were used in the study to estimate 
the spatial water balance of the Devils Lake basin. Components of the surface water budget 
(precipitation, surface runoff, and evapotranspiration) were computed at the pixel level to estimate 
the change in surface water storage. The methodology employed estimates the observed lake 
rise with an average error of 0.12 m.  
 
The grid GIS-based surface water balance estimation was comparable to the observed stage of 
the lake. The high errors of prediction can be attributed to the complex nature of the runoff 
response of the basin, underestimation of the groundwater contribution as indicated by prior 
studies, and the precision of the observed lake stage record. Observed lake stage was measured 
at a location near the City of Devils Lake. The authors suggest a monthly water balance approach 
aggregated to seasonal and yearly estimates may improve the results. 
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