Structural Chemistry of Fe, Mn, and Ni in Synthetic Hematites as Determined by Extended X-Ray Absorption Fine Structure Spectroscopy

Balwant Singh¹, D.M. Sherman², R.J. Gilkes³, M. Wells⁴ and J. F. W. Mosselmans⁵

¹ Department of Agricultural Chemistry & Soil Science, The University of Sydney, Sydney, Australia
² Department of Geology, University of Bristol, Bristol, UK
³ Department of Soil Science & Plant Nutrition, University of Western Australia, Nedlands, Australia
⁴ CRC LEME, University of Canberra, Belconnen, A.C.T., Australia
⁵ CCLRC, Daresbury Laboratory, Warrington, UK

E-mail of corresponding author: b.singh@acss.usyd.edu.au

Abstract: The incorporation of transition metals into hematite may limit the aqueous concentration and bioavailabity of several important nutrients and toxic heavy metals. Before predicting how hematite controls metal-cation solubility, we must understand the mechanisms by which metal cations are incorporated into hematite. Thus, we have studied the mechanism for Ni²⁺ and Mn³⁺ uptake into hematite using extended X-ray absorption fine structures (EXAFS) spectroscopy. EXAFS measurements show that the coordination environment of Ni²⁺ in hematite corresponds to that resulting from Ni²⁺ replacing Fe³⁺. No evidence for NiO or Ni(OH)₂ was found. The infrared spectrum of Ni-substituted hematite shows an OH-stretch band at 3168 cm⁻¹ and Fe-OH bending modes at 892 and 796 cm⁻¹. These vibrational bands are similar to those found in goethite. The results suggest that the substitution of Ni²⁺ for Fe³⁺ is coupled with the protonation of one of the hematite oxygen atoms to maintain charge balance.

The solubility of Mn^{3+} in hematite is much less extensive than that of Ni²⁺ because of the strong Jahn-Teller distortion of Mn^{3+} in six-fold coordination. Structural evidence of Mn^{3+} substituting for Fe³⁺ in hematite was found for a composition of 3.3 mole % Mn_2O_3 . However a sample with nominally 6.6 mole % Mn_2O_3 was found to consist of two phases: hematite and ramsdellite (MnO₂). The results indicate that for cations, such as Mn^{3+} showing a strong Jahn-Teller effect, there is limited substitution in hematite.

Key Words: EXAFS • Fe Oxides • Hematite • Metal Substitution • Trace Elements • XAS • XRD

Clays and Clay Minerals; October 2000 v. 48; no. 5; p. 521-527; DOI: <u>10.1346/CCMN.2000.0480504</u> © 2000, The Clay Minerals Society Clay Minerals Society (<u>www.clays.org</u>)