Quantitative Measurement of Paramagnetic Fe³⁺ in Kaolinite

Etienne Balan¹, Thierry Allard¹, Bruno Boizot¹, Guillaume Morin¹ and Jean-Pierre Muller^{1, 2}

¹ Laboratoire de Minéralogie-Cristallographie, UMR 7590, CNRS, Universités Paris 6 et 7 and IPGP, Case 115, 4 Place Jussieu, 75252 Paris cedex 05, France

² Institut de Recherche pour le Développement (IRD), 213 rue Lafayette, 75480 Paris cedex 10, France

E-mail of corresponding author: balan@lmcp.jussieu.fr

Abstract: A method is proposed to measure the absolute concentration of paramagnetic Fe^{3+} ions in kaolinite from various geochemical environments using powder X-band electron paramagnetic resonance (EPR) data. An Fe^{3+} -doped corundum sample is used as a concentration standard. The Fe^{3+} signal is calibrated by calculating the powder EPR spectra of Fe^{3+} ions in corundum and low-defect kaolinite. The paramagnetic Fe^{3+} concentration in other samples is obtained by an extrapolation procedure. This study provides a direct assessment of the iron distribution between isolated structural Fe^{3+} ions and other iron species, such as Fe^{3+} concentrated phases and Fe^{2+} ions. The concentration of isolated structural Fe^{3+} ranges between 200–3000 ppm and represents less than half of the total iron within kaolinite crystals.

Key Words: Electron Paramagnetic Resonance • EPR • Fe³⁺ • Kaolinite

Clays and Clay Minerals; August 2000 v. 48; no. 4; p. 439-445; DOI: <u>10.1346/CCMN.2000.0480404</u> © 2000, The Clay Minerals Society Clay Minerals Society (<u>www.clays.org</u>)