Fourier Transform Analysis: (1) X-ray Diffraction Effects by Finite Montmorillonite and Mica Crystals

Malcolm Ross

U.S. Geological Survey, Washington, D.C. 20242

Abstract: A computer program has been developed to generate the X-ray diffraction intensity distribution along any particular reciprocal lattice row, plane, or volume, for any arbitrary group of atoms within a crystal. The program, which maps the intensity in crystal reciprocal space in much the same way as a conventional Fourier series program maps the electron density in direct crystal space, has been used to calculate the expected X-ray diffraction line profiles for a number of montmorillonite and mica crystallites of varying thicknesses in the c^* direction.

The program evaluates the function $G(HKL) = \sum n-1 N f n$ 2ni(H x n + K y n + L z n), where G(HKL) is the Fourier transform of an array of N-atoms at a particular H, K, L coordinate in reciprocal space, f_n is the scattering factor of the nth atom, and x, y, z its coordinates in direct space. The function is evaluated for all N-atoms within the finite model crystal under study for non-integral as well as integral values of H, K, and L. In practice a complete line profile is made by calculating G(HKL) at intervals in the range of $(100 \ \text{Å})^{-1}$ to $(10,000 \ \text{Å})^{-1}$.

The apparent d-spacings of the various clay mineral models, as given by the line profiles, approach asymptotically the true value as the number of layers increase. For example, the apparent d_{001} spacing for a mica of the composition K (Fe, Mg) 3 Si 3 Al 10 (OH) 2 is 12.91, 11.35, 10.79, 10.53, 10.38, 10.22, 10.14, 10.04 and 10.02 Å for crystals 2, 3, 4, 5, 6, 8, 10, 20, and 30 layers thick, respectively. For the infinitely thick crystal, d_{001} =10.000 Å. The apparent d_{001} spacing for a montmorillonite of the composition $K_{0 \cdot 33}$ Al₂(Si, Al)₄O₁₀(OH)₂ • 4H₂O (true d_{001} =15.400 Å) is 18.85, 16.80, 15.87, 15.52, and 15.41 Å for crystals 2, 3, 5, 10, and 30 layers thick, respectively.

These diffraction profiles and line shifts can be used in analyzing montmorillonites, micas, and mixed-layer montmorillonite-mica clays.

Clays and Clay Minerals; 1967 v. 15; no. 1; p. 47; DOI: 10.1346/CCMN.1967.0150105
© 1967, The Clay Minerals Society
Clay Minerals Society (www.clays.org)