HOME CONTACT My eBook

TO CATEGORIES

FULLTEXT SEARCH

GO!

NEW: Advanced Search

Periodicals:

- > Materials Science Forum
- > Key Engineering Materials
- > Solid State Phenomena
- > Defect and Diffusion Forum
- > Applied Mechanics and Materials AMR

- > Advanced Materials Research **AST**
- > Advances in Science and Technology

 JNanoR

1.400.000 PAGES OF RESEARCH

MONTHLY 1.200.000 **PAGE VIEWS**

OVER 300.000 VISTORS PER MONTH

Synthesis and Characterization of Attapulgite Clay Coated Ag/AgBr/TiO₂ Visible Light Photocatalyst

Journal	Advanced Materials Research (Volume 178)
Volume	Advance in Ecological Environment Functional Materials and Ion Industry II
Edited by	Jinsheng Liang and Lijuan Wang
Pages	285-290
DOI	10.4028/www.scientific.net/AMR.178.285
Citation	Xu Gu et al., 2010, Advanced Materials Research, 178, 285
Online since	December, 2010
Authors	Xu Gu, Jin Long Jiang, Dong Li
Keywords	Ag/AgBr/TiO2, Attapulgite Clay, Photocatalytic
Abstract	Attapulgite clay coated Ag/AgBr/TiO2 visible light photocatalyst was prepared by an impregnation-deposition-precipitation method. The catalyst was characterized via powder X-ray diffraction (XRD), TEM, UV-Vis spectroscopy, and EMAX, and their photocatalytic activity was examined by degradation of methylene blue in water under sunlight. The results showed that the catalyst exhibited high efficiency for the degradation of methylene blue and the catalyst activity maintained effectively after successive cyclic experiments under sunlight, attributed to adsorption of dye on attapulgite clay and high dispersion of AgBr and TiO2 nano-sized particles on the surface of attapulgite clay.
Full Paper	Get the full paper by clicking here

First page example

> Journal of Nano Research

JBBTE
> Journal of Biomimetics,
Biomaterials, and Tissue
Engineering

JMNM
> Journal of Metastable and
Nanocrystalline Materials

JERA
> International Journal of
Engineering Research in Africa

> Advanced Engineering Forum

> Nano Hybrids

Advanced Materials Research Vol. 178 (2011) pp 285-290 Online available since 2010/Dec/30 at www.scientific.net © (2011) Trans Tech Publications, Switzerland doi: 10.4028/www.scientific.net/AMR.178.285

Synthesis and Characterization of Attapulgite Clay Coated Ag/AgBr/TiO₂ Visible Light Photocatalyst

Xu Gua, Jinlong Jiang and Dong Li

Faculty of Life Science & Chemical Engineering, Huaiyin Institute of Technology, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaian 223003, China

aguxu@hyit.edu.cn

Keyword: attapulgite clay, Ag/AgBr/TiO2, photocatalyst

Abstract: Attapulgite clay coated Ag/AgBr/TiO₂ visible light photocatalyst was prepared by an impregnation-deposition-precipitation method. The catalyst was characterized via powder X-ray diffraction (XRD), TEM, UV-Vis spectroscopy, and EMAX, and their photocatalytic activity was examined by degradation of methylene blue in water under sunlight. The results showed that the catalyst exhibited high efficiency for the degradation of methylene blue and the catalyst activity maintained effectively after successive cyclic experiments under sunlight, attributed to adsorption of dye on attapulgite clay and high dispersion of AgBr and TiO₂ nano-sized particles on the surface of attapulgite clay.

1. Introduction

TiO₂ photocatalysis has been attracted wide attention for the degradation of different pollutants and the destruction of bacteria [1]. However, the main drawback of low quantum yield and the lack of visible light utilization hinder its practical application. To solve these problems, many methods were used to enhance the photocatalytic efficiency and visible-light utilization of TiO₂, which include impurity doping [2-4], metallization [5,6], and sensitization [7]. Ag/AgBr/TiO₂ photocatalyst prepared by coating AgBr on the P-25 TiO₂ exhibits excellent visible-light photocatalytic activity for the destruction of azodyes and bacteria [8]. To save expensive raw materials, photocatalyst were usually loaded on the surface of porous supports. Those supported photocatalysts remain high photocatalytic efficiency for the high dispersion of catalyst particles and high adsorption properties of the supports. So, Elahifard et al [9] prepared apatite coated Ag/AgBr/TiO₂ visible light photocatalyst through the deposition of TiO₂ on hydroxyapatite, followed by the decoration of AgBr, which also has a significantly high photocatalytic activity under visible light. In these photocatalysts [8, 9], AgBr is the visible light component of the photocatalyst and Ag⁰ prepared on the surface of AgBr under visible light enhance the electron-hole separation and interfacial charge transfer.

Attapulgite (ATP, or palygorskite) clay is an cheap natural clay and has been used to remove organic pollutants in water for their excellent adsorption properties [10, 11]. There has been reported that Ag-PG/TiO₂ photocatalyst prepared by coating TiO₂ nanoparticles on the surface of palygorskite clay modified by silver ions has high degradation efficiency for methylene blue under UV light [12]. Zhang et al [13] prepared attapulgite-SnO₂-TiO₂ composite photocatalyst after deposition and calcination of SnO₂ and TiO₂ precursors, which exhibits high photocatalytic activity for degradation of methyl orange under ultraviolet radiation.

In this paper, we prepared Ag/AgBr/TiO2/ATP composite photocatalyst after deposition TiO2 and

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP, www.ltp.net. (ID: 122.70.132.162-09/12/11,16:41:41)