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ABSTRACT 

The objective of this study was to investigate the potential of diffuse reflectance spectroscopy 

technique to predict several important soil parameters such as soil moisture (SM), 

hygroscopic water (HW), soil carbonates (SC) and specific surface area (SSA) through 

descending layers of the soil stratigraphy. For these purposes a field spectrometer (Analytical 

Spectral Device, ASD) with a probe (sub-surface spectral head device - 3S-HeD) for reading 

subsoil reflectance data were used. 145 samples, taken from different Israeli soils at different 

depth and a spectral library containing  laboratory and field in-situ collected spectra (by using 

3S-HeD device) were used to generate calibration and validation models in the study based 

on the Near Infrared Analysis (NIRs). These models were generated  by the  correlation 

between spectral characteristics and chemical soil properties separately for each soil property, 

using partial least square regression (PLSR) analysis.The regression coefficients between 

measured and predicted values of the soil properties varied between 0.93 and 0.99 in the 

calibration and validation stages, RMSE (Root Mean Square Error) between 0.09 and 4.6, 

which showed that NIRS method had potential to accurately predict these attributes in soils. 

Even though the prediction results for SSA are relatively poor (RMSE varied between 27 and 

30) accurate linear relationships between the laboratory measured and predicted values exist 

(it is seen by high correlation r values in the calibration and validation stages). In addition, to 

predict studied properties down the profile by using 3S -HD device, eighteen drill holes 

locations were selected from the surface IS-based map within the semi-arid agricultural area, 

using clustering isodata methods. For each drill holes ten layers were spectrally measured 

down to 100 cm depth. The results we got from the spectroscopic analysis were logical given 

the environmental conditions. Further research is needed to compare our results with 

chemical lab tests of the same soil samples, and to repeat this study in other locations. This 

new approach is worth investing in as it is cost effective for such a variety of applications 

currently required. 

 Keywords: Spectral response, SSA, PLSR, POS, models. 

Notations  

SEP is the standard error of prediction; y is the predicted value of a soil property; x is the 

measured value of the same soil property, and n is the total number of samples. 

1. Introduction 

Spectral assessment of soils, using ground based optical sensors, is actually widely accepted 

as an alternative to conventional methods of soil survey. Known soil attributes absorb and 

reflect incident radiation at discreet levels. The differences between the levels of both 

absorption and reflection at each wavelength, create various structural configurations in the 
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spectral signature, such as troughs and peaks or reflectance inflection differences (RIDs- 

Nanni and Dematte, 2006), whose positions correspond to specific chemical groups. An 

intercorrelation between featureless and constituents with spectral features is the mechanism 

by which those harder to detect constituents are recognized and measured. Until now such 

work was based on laboratory measurements of spectra and building of NIRS models used to 

successfully assess many important characteristics of soils, both at the surface level (Dalal 

and Henry, 1986; Morra et al., 1991; Chang et al., 2001; Cozzolino and Moron, 2003; and 

many other) and later down the soil profiles (Galvao et al., 1997; Dematte, 2002; Dematte et 

al., 2004). However, only some information is available for the use of Diffuse Reflectance 

Spectroscopy (DRS) for in situ analysis of soil properties. It is known some soil on-the-go 

mobile systems (e.g. Bricklemyer and Brown, 2010; Christy, 2008; Waiser et al., 2007) and 

static proximal soil sensing (Kusumo et al., 2011; Rossel et al., 2006). Subsurface soil 

spectroscopy, with an emphasis on stratigraphy in situ, has rarely been researched, and there 

is minimal previous data to study. Ben-Dor et al. (2008) developed an accessory (3S- HeD) 

that can be attached to a VNIR portable optic spectrometer to measure soil spectra whereby 

the optical head penetrates the soil profile.  We present a study on ground-based approaches, 

based on the Penetraiting Optical Sensor (POS) technology. A practical difficulty this 

technique faces is that soils in the field, unlike used in the laboratory are generally moist and 

have uneven surfaces (Wu Chun-Yu et al., 2009). However, it is known that in situ soil 

reflectance measurements combined with locally calibrated empirical models should prove a 

valuable and efficient tool for rapidly approximating soil properties. It was found, for 

example, that ground-based spectrometers give RMSE of cross-validation similar to the limit 

of repeatability of a routine soil organic carbon (SOC) analytical technique (Stevens et al., 

2008). Viscaria Rossel et al. (2009) noted that predictions of clay content from the field-

collected spectra (RMSE=7.9%) were slightly more accurate than those from the laboratory-

collected spectra (RMSE=8.3%) and stated improving the capacity of the models by 

extending the range of the PLSR calibrations by “spiking” them with 74 field spectra. 

It is known, that Imaging Spectroscopy (IS) data have a number of disadvantages relative to 

point spectrometry (low signal-to-noise ratio, significant atmosphere attenuation, proper data, 

and so on). Soil profiling is the ultimate parameter for soil classification since the sun’s 

radiation interacts with only the upper layer of the soil surface. However, IS allows every 

pixel in the image to be shown as a reflectance spectrum, and to obtain high spatial 

resolution, which may indicate the need to investigate different ways of using the IS data for 

soil analysis, for example, choosing locations to sample the soil profile. 

Use of the spectral - based technology for the soil evaluation and mapping highly appropriate 

and important in Israel, because continuous replenishment of practically all soils in the 

Mediterranean area with aeolian material, which is transported from the Sahara Desert, 

affects the generic structure and heterogeneity of soils (Yaalon and Canor, 1973; Simonson, 

1995). Under such conditions, it is often difficult to get a realistic picture of the vertical and 

horizontal distribution of soil properties, using traditional methods. 

The ultimate goal of our research is to enable the use of appropriate technology for practical 

applications in soil classification and mapping.  

The main goals at this stage of the research are:  

1. Tested the accuracy of a models for predictions of the above mentioned parameters 

using a spectral library that contains spectra collected in the laboratory from air-dry 
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ground soil but also a number of spectra that were collected in situ at field conditions 

on the depth, using PLSR analysis. 

2. Use the built models to predict soil properties for independent agricultural area in the 

semi-arid zone for the entire soil profile by using POS technology.  

2. Materials and methods 

2. 1 Soil sampling 

Soil samples, taken from different Israeli soils were used to generate predictive models based 

on the NIRs approach. 90 samples were taken from an existing Israeli soil bank (Ben-Dor and 

Banin, 1995a, 1995b) and 55 were taken from the more recently drilled holes. The soil bank 

samples were created by sampling the upper 0 to 5 cm of the soil profile. The drill holes were 

excavated by using a 10-cm Dutch driller, and then samples were taken every 10cm down to 

100cm. Each sample was placed into a sealed plastic bag and sent to the laboratory for 

analysis.  

2.2 Spectral analysis 

All samples of Israeli soils, used for models creation, were spectrally measured by employing 

the field spectrometer ASD and using the High Intensity Contact Probe (Ben-Dor et al., 2008). 

Before measurement big stones and plant residue were excluded from the samples. Then the 

soil was shaken and pressed gently before levelling with a spatula for a better light reflection 

and high signal to noise ratio. For each sample, two spectral measurements were averaged. 

The same ASD spectrometer with a probe 3S-HD was used for the drill holes measurements 

in situ on the depth. To predict soil properties 190 spectra characterizing soil profiles of 19 

drill holes have been measured within the independent semi-arid area. 

2.3 Field spectral measurements  

The on-the-go measurement system was used. Detailed information about this system can be 

found in Ben-Dor et al. (2008). Figure 1 shows a general view of the device. The device is 

hooked to an ASD field spectrometer that is sensitive to the VNIR-SWIR spectral region 

(350-2500 nm). After the holes were bored, the instrument was calibrated according to the 

halon standard. Then the instrument probe was lowered into the hole, and measurements were 

taken at intervals of 10 vertical cm, down to 100cm at the deepest point. The cylindrical 

nature of the bore holes necessitates an averaging of the wall’s values at each depth. The 

sensor’s field of view is a 90º swath of the wall. By rotating the sensor, four of these 

measurements were taken at each depth in order to get the full 360 degree view of the wall, 

and then they were averaged out to a single value for each depth.  

2.4 Chemical  

 

Four examined soil properties were quantified. The soil moisture (SM) and hygroscopic 

water (HW) were determined by using the oven-drying method (Gardner, 1986), the soil 

carbonate (SC) was determined by using the calcimeter method (Nelson, 1986), the specific 

soil area (SSA) was determined by using the ethylene glycol monoethyl ether method 

(Thomas, 1986). Hygroscopic water is the most important spectral feature used in the 

identification of SSA, which is highly correlated with the properties of various Israeli soils, 
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such as clay content (Banin and Amiel, 1970). Before each laboratory measurement, a gentle 

grinding process took place to attain a 2-mm grain-size fraction in each sample. 

 
Figure 1: 3S- HeD assembly. 

2.5 Spectral-based models creation  

By comparing the reflectance measurements to their equivalent wet chemistry measurements, 

multivariate models were constructed and tested to predict each soil property based solely on 

the spectral measurement. Partial least square regression (PLSR) was used to relate 

reflectance spectra with measured soil properties. is an example of a latent variable regression 

method (Martens and Naes, 1987), where PLS components known as factors are selected to 

maximize both description of the independent variables and correlation to the dependent 

variables. To develop the statistical model of each soil property, the total samples were 

randomly divided into two sets. One set was used to develop a prediction equation 

(calibration set), and the other set was used to validate the predictive against unknown 

samples (validation set). The multivariate calibration models were calculated by PLSR using 

Unscrambler 9.1 software (Esbensen, 2002). Various spectral pretreatment manipulations to 

minimize spectral side effects were applied. The PLS analysis was applied to the reflectance, 

and to the 1st and the 2nd derivatives of the reflectance (Savitzky and Golay, 1964). This 

process amplifies the “peakedness,” which is considered advantageous for noisy and scattered 

data. 

The ability of the reflectance technique to predict a soil property was evaluated by the lowest 

standard error of prediction (SEP), the lowest root mean square error of prediction (RMSEP), 

and the highest coefficient of correlation (r). SEP is the standard deviation of the difference 

between the measured and the estimated values for samples in the validation set and were 

calculated from the following equation: 

 

                                                                         (1)                                                                

 

where y is the predicted value of a soil property estimated using the NIRS technique, x is the 

measured value of the same soil property by standard laboratory method and n is the total 

number of samples.  

)([ ] 2/12
1/ −−= ∑ nxySEP
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The RMSEP is the square root of the residual y variance divided by n, expressed in the 

original measurement unit. Thereafter all models is used to predict quantitative parameters of 

chemical properties for the drill hole samples. 

2.6 The study area to predict soil properties 

 An independent area of about 4 000 m² near Ashdod (in the south of Israel’s Coastal Plain) 

at the boundary of the Nizzanim sand dunes, was selected. The area is a bare agricultural 

field, where no farming has been done in recent years.  Figure 2 show the location of the 

research area. 

 
Figure 2: The location (Detailed relief and political map of Israel. http://www.vidiani.com) 

and a schematic soil map of the study area showing geographical coordinates. 

At the selected locations, the climate is semiarid with an annual precipitation of about 350 - 

400mm. Alluvial Light Brown soils (hereinafter Brown soils) according to the local Israeli 

system are created within the upper slopes and the flat areas, and these soils exhibit the 

characteristic properties of semi-arid climate soils, such as increased clay content in median 

horizons, and fine grain soil saturation with calcium carbonates ( Dan and Koyumdjiski, 

1979). Similar soils in the FAO classification are Calcic Xerosols and in the American soil 

taxonomy are Haplargids and Camborthids (Correlation List for the Soils of Israel, 2001).  

Found at the bottom of the slope, near the stream in the center of the field (Figure 2) are 

accumulative soils (Fluvisols in the FAO classification) that developed from alluvial-deluvial 

sand deposits, and are mixed with loamy deposits during the erosion process (hereinafter 

Alluvial soils). Dense clay deposits are transported along the stream, and out towards the sea 

during the rainy season. Grainy material transported by the offshore winds is mixed with 

heavy sediments, which probably explains the medium texture of the soil, despite 

neighboring Nizzanim dunes.  

This area was covered by one swath of the airborne imaging spectrometer, AISA-ES, and 

later using POS soil survey methods.  
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2.7 Drill hole locations  

Nineteen drill hole locations were selected from the surface IS-based map of the area, using 

one of the unsupervised classification – isodata methods (Tou and Gonzalez, 1974), that best 

represented the spectral data space (Christy, 2008). The method is based on territorial 

mapping of spectrally similar areas, which are identifiable because each pixel in the 

hyperspectral image is represented by a reflectance spectrum. This is useful in choosing 

locations to sample the soil profile (which is done by inserting the spectrometer into holes as 

described above). In each group, several points for boring holes were selected. Then the bore 

hole locations were drilled and sampled using a 10-cm Dutch driller, and the locations were 

georeferenced using GPS. Also, absolute heights were measured for each point, and the data 

were used to derive a height map of the study area, using the Kriging method (Figure 3). 

 

Figure 3:  A height map of the study area. Also given are the drilling point position.  

 

Figure 4 shows the isodata classification method applied to hyperspectral images of the 

studied territory. Six groups of differently colored pixels can be distinguished, suggesting the 

existence of six different of the topsoil physical and chemical characteristics. It can be seen 

from Figures 3 and 4 that correlation exists between the spectral characteristics of the topsoil, 

and the topographies different regions within the study area. Brown soils (for example, holes 

17, 18, 19, 24 and 25) which occupy the upper positions correlate, mainly, to the Magenta 

and Yellow isodata groups. Alluvial soils that accumulate near the stream bed, and correlate 

to most of the violet colored isodata group. Such difference between soils at different 

depository levels is similarly observed (for example, holes 21 and 28; holes 19 and 9). But it 

is necessary to confirm statistically. The POS measurements were carried out in the summer 

of 2008, by using a 3S-HeD assembly to spectrally interpret the walls of the boreholes. In 

order to compare and contrast different soils we selected holes in, both, the upper areas and 

the lower areas at the bottom of slope, and then spectroscopicly analyzed the soil profiles to 

quantify studied soil properties. 
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Figure 4: The isodata classification of the area using the IS reflectance image. 

2.8 Air-borne data 

AISA-ES imaging spectrometer consists of two sensors, measuring along 180 channels (60 in 

VNIR and 120 in SWIR), in the spectrum of 450-2450 nm. Data was collected at an altitude 

of approximately 2400m (8000ft) above sea level, with pixel size 1-2 m. After the data 

acquisition (on November, 2004), raw data were transformed into reflectance, using The 

Atmospheric COrrection Now (ACORN) and the Empirical line method (ELM). ACORN is a 

commercially-available, enhanced atmospheric model-based software that uses licensed 

MODTRAN4 technology to produce high quality surface reflectance without ground 

measurements (Berk et al, 1999). ACORN uses look-up-tables calculated with the 

MODTRAN4 radiative transfer code to model atmospheric gas absorption as well as 

molecular and aerosol scattering effects, converting the calibrated sensor radiance 

measurements to apparent surface reflectance (AIG, 2001). 

ELM assumes there is a linear relationship between raw digital numbers (DNs), or radiance 

and reflectance spectra of ground targets (Baugh and Groeneveld, 2008). To use ELM, we 

select two or more homogeneuous as possible areas in the scene with different albedos. In 

situ spectroradiometer measurements of these targets are made on the ground.  The in situ and 

remote sensing–derived spectra are regressed and gain and offset values computed. The gain 

and offset values are then applied to the remote sensor data on a band by band basis, 

removing atmospheric attenuation. These data then were used for the selected drill hole 

locations, using unsupervised classification. We used the technology of the software ENVI to 

analyze and correct the hyperspectral data, such as a Minimum Noise Fraction (MNF) 

procedure to noise reduction procedure, and the signal–to-noice ratio (SNR) of the 

reflectance image. 

3. Results and discussion  

3.1 Spectral-based models NIRA to predict soil properties 

Statistics for predicted SSA, carbonates, hygroscopic water and soil moisture for the 

validation stage are shown in Figure 5. The R (correlation coefficient), RMSE (root mean 

square error) 
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and SE (standard error) between the predicted and measured value for the calibration and 

validation sets were used to evaluate the prediction ability of NIR spectroscopy technique 

(Table 1,2). 

 

 

  

 

 

                  A. hygroscopic water                                              B. carbonates 

 

  

 

 

 

 

 

 

 

 

 

                         C. SSA                                            D. soil moisture 

Figure 5: Correlation between measured and predicted values of A. hygroscopic water, B. 

carbonates, C. SSA and  D. soil moisture for the validation stage (elements- number of 

samples; correlation- correlation coefficient; RMSEP- root mean square error of prediction; 

SEP- standard error of prediction. Also provided bias, offset and slope values). 

Table 1:  Calibration statistics for studied soil properties 

Properties N samples R R² SE RMSE 

Hygroscopic water,%  57 0.98 0.96 1.41 1.43 

Soil carbonates,%  55 0.99 0.98 3.18 3.15 

SSA,m²/g 88 0.95 0.9 27.3 27.16 

Soil moisture,% 48 0.99 0.98 0.07  0.07 

Table 2:  Validation statistics for studied soil properties 

Properties N samples R R² SE RMSE 

Hygroscopic water 

(%) 

35 0.97 0.94 1.31 1.29 

Soil carbonates (%) 55 0.98 0.96 4.65 4.61 

SSA,m²/g 88 0.94 0.88 30.91 30.74 

Soil moisture, % 48 0.98 0.96 0.09  0.09 
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It can be seen from the tables that the correlation coefficient (r) between measured and 

predicted values of the studied soil properties in the calibration and validation stages varied 

between 0.94 and 0.99, coefficient of determination (r
2
) between 0.88 and 0.98, RMSE and 

SE were similar and varied between 0.07- 4.65 which showed that NIRS had potential to 

accurately predict these attributes in this soil. For SSA values RMSE and SE are higher and 

varied between 27-30.74, but strong linear relationships between the lab-measured and 

predicted values exist (indicated by high correlation r values – Figure 5c, Table1).  

3.2 Spectral analysis of soils  

As discussed, in order to compare different soils, drilled holes were selected in the upper 

areas and the areas at the bottom, and then spectroscopicly analyzed the soil profiles to 

quantify studied soil properties. Figure 6 shows soil samples taken from within the 

representative profiles of holes 9 and 19, which were bored into Alluvial and Brown soils, 

respectively.  

 

Figure 6: Soil depth samples for selected drill holes: hole 9-Alluvail soil; hole 19- Brown 

soil. 

 

 In Figure 7A and 7B represent averaged reflectance spectra of these soils.  

 A B 

 
Figure 7: Averaged reflectance spectra on the depth of soils: A. Brown soil; B. Alluvial soil.  

As can be seen from Figure 7, both profiles tend to show a decrease in reflectance, with an 

increase in the width of the spectral concavity at 1400 and 1900nm. This pattern is attributed 

to OH from the hygroscopic water in the soils (Dematte, 2002). In this case, it clearly 

indicates that wetter soil horizons correspond with the lowest reflectance values. Close to the 
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surface, where evaporation is high, all soils have low water content and maximum 

reflectance, which is characteristic of the top layers of all soils in the area.  As can be seen in 

Figure 7A, the most pronounced hygroscopic water absorption properties for Brown soils, 

and the lowest reflectance indexes can be observed at 50-80 cm depths, with the maximum 

occurring at a depth of 70 cm.   

Characteristically, alluvial soil (Figure 7B) shows a gradual increase in hygroscopic water 

absorption properties down the profile, with a maximum occurring at a depth of 100 cm. We 

observed that soil texture becomes heavier in this layer characteristic. Thus, the changes in 

reflectance indexes or intensity of reflectance along the soil profile in this case, are related to 

changes in hygroscopic water content and SSA. 

 Figure 8 shows the main characteristic spectral signatures and corresponding soil attributes. 

 

Figure 8:  The main characteristic spectral signatures and corresponding soil attributes. 

Note the clearly seen spectral feature at 2200 nm in the sampled soils; this feature usually 

reveals the OH group in the clay minerals lattice. From figure 7A and 7B we observe that the 

clay mineral peak becomes more symmetrical with an increase in depth (in the horizons 

where the greatest hygroscopic water contents were observed). This suggests that the major 

clay mineral is most likely montmorillonite with a small amount of kaolinite (Kruse et al., 

1991). This increased SSA is also evident in the correlation between the OH-water absorption 

features at 1400 and 1900nm and the chemical properties of the SSA. Spectral signatures of 

carbonates are marked at 2330 nm (Ben-Dor and Banin, 1990) and are visible mostly in the 

spectra belonging to the Brown soil profile (Figure 8, Figure 7A). It can be seen that there are 

tendencies common for all soils, such as a strong absorption feature with spectral concavity 

visible at around 500 nm; this is attributed to iron oxide minerals, such as hematite and 

goethite (Hunt and Salisbury, 1970). Albedo distribution pecularities within the profile 

demonstrate additional soil properties. For example, the relatively high reflectance (up to 

40%) of the deeper horizons in the Brown soil stratigraphy, indicate more sandy soil texture. 

Considerable differences in the intensity of reflectance within these soil profile structures 

indicate inhomogeneous stratigraphies, (Figure 7A). For Alluvial soils, a sharp decrease in 

the albedo in subsurface layers with similar reflectance values at all depths bellow the topsoil, 

correlates with the similarity in color and moisture content indexes at all of those depths (as 

can be seen from the morphology of the samples in Figure 5). A more continuous spectral 
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slope across 350-1200 nm, and a small absorption property at 1700 nm at the 70-100 cm 

horizons indicate a relatively high content of organic matter (Ben-Dor and Banin, 1995a). 

The absorption feature at about 1300 nm in these soils also indicates the presence of organic 

matter.  

Hence, from the spectra of the Brown soils profile, two main diagnostic indicators can be 

visually identified: the presence of accumulated clay and of carbonates. The first is related to 

higher moisture absorption properties in the 50-80 cm depth layer, which determines higher 

clay content, and can be seen via its correlation with OH-water absorption at 1400 and 1900 

nm. The second is related to the carbonates absorption feature at 2330 nm. Also, albedo 

distribution characteristics expose soil properties that are important diagnostic indicators. 

3.3 Predicted soil profiles  

Figure 9A and B present the distribution of predicted parameters (hydroscopic water, soil 

moisture, SSA, and carbonates) that were obtained from the models (applied to the soil in 

profiles 9 and 19).  

                                                                      A 

B 
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Figure 9: The distribution of predicted quantitative parameters (a. hygroscopic water, b. soil 

moisture, c. SSA,  and d. carbonates) that were obtained from the model as applied to the 

Alluvial soil in profile 9 (A) and Brown soil in profile 19 (B).  

The figures show that hygroscopic water and soil moisture values are predicted by the model 

to be distributed throughout the profile in the same pattern that they are distributed in, as 

observed by the spectral data. Therefore, the spectral distribution for alluvial soils correlates 

to values for hygroscopic water and soil moisture, which increase with depth (Figure 9 A: a, 

b). Similar profile distributions for hygroscopic water and soil moisture, visible in the 

Figures, show that at low relative humidity, moisture consists mainly of absorbed water. As 

would be expected, minimum values are observed on the surface, and values gradually 

increase with depth, except for an anomaly at the 40 сm and 50 cm horizons, which is clearly 

visible in the hygroscopic water profile. In the case of both parameters, these values again 

decrease at the 100 сm layer. These drier bands and the moist layers that they are sandwiched 

between, are observed using every technique. The properties of soil moisture are most clearly 

explained by the SSA indicator, showing a gradual increase in clay content with depth 

(Figure 9A: c). According to the correlation table (Aly et al., 2004) for the SSA indicators, 

we can say in a certain approximation, that texture in such soils changes roughly from sandy 

loam on top, to clay, with increasing depth, and have maximum values of 300 and 340 m
2
/g 

at 90 cm and 100 cm depths, respectively. This correlates to spectral assessments of 
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hydroscopic water values. As would be expected, carbonate content proved to be low 

throughout the whole soil profile, with maximum values at 40 cm depth not exceeding 15% 

(Figure 9A: d).  

In Brown soil, profiles generated by predictive models show that the distributions of these 

studied properties correlate with the spectral characteristics of the soil. A sharp increase in 

hydroscopic water content at the 60-80 cm horizon, with a maximum value at the 70 сm 

depth (Figure 9B: a), clearly correlates with the distribution of SSA parameters throughout 

the profile. The maximum values, which indicate clayey soil texture, are observed at the same 

depths (Figure 9B: c). As can be seen from Figure 9B, the carbonate content is relatively low, 

and increases sharply to 32% at the 40-50 см depth, and then to 42% in the 80 cm layer. This 

can be explained by the close proximity of carbonate sandstone deposits, locally referred to 

as “Kurkar”. 

Thus, the results we got from the spectroscopic analysis were logical given the environmental 

conditions. Our findings require further validation by way of chemical laboratory testing. 

4. Conclusions 

 This work demonstrates the possibility of using ground spectral-based approaches for digital 

quantify and qualify of the some soil properties in situ and in real time, using the 

nondestructive NIRs procedures. We were able to predict, soil moisture, hygroscopic water, 

carbonates and SSA at a reasonable level down the profile based on the spectral library 

containing laboratory and field in-situ collected spectra, which showed that NIRs had 

potential to accurately predict these constituents in the studied soil. This technology make it 

possible to visually discern soil characteristics from the spectra, and to then quantify them in 

the stratigraphy of the soils down the profile,  based on the spectral features associated with 

those constituents. When using the models, input data was exclusively spectral, not based on 

chemical lab testing. The POC method provides direct measurements at very close spatial 

intervals, which allows the acquisition of more samples in a given area. In such cases the 

number of samples required for laboratory analysis may be also substantially reduced. It is 

obvious, that our study is incomplete. We lack the resources for chemical laboratory analysis, 

and for statistical correlation between the attributes of the soil surface and the spectral 

response from the hyperspectral image. We would also prefer to have models based on a 

more robust sampling of more varied soils. Given the opportunity to expand and complete 

this study, we would include both air-born and ground based hyperspectroscopy. We hope to 

gain access to these resources in order to complete our study, refine our method, and launch 

its application for soil survey.  

List of symbols and abbreviations 

ACORN, atmospheric correction now; ASD, analytical spectral device; DRS, diffuse 

reflectance spectroscopy; DNs, digital numbers; ELC, empirical line calibration; ENVI, 

environment for visualizing images;  FAO, Food and Agriculture Organization; GPS, global 

positioning system; HW, hygroscopic water; IS, imaging spectroscopy; MODTRAN, 

moderate resolution atmospheric transmission; MNF, minimum noise fraction; NIRs, near 

infrarad analysis; nm, nanometer; POS, penetrating optical sensor; PLSR, partial least square 

regression; PLS, partial least square; R, correlation coefficient; R
2
, coefficient of 

determination; RIDs, reflectance inflection differences; RMSE, root mean square error; 

RMSEP, root mean square error of prediction; SC, soil carbonates; SE, standard error; SEP, 
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standard error of prediction; SM, soil moisture; SSA, specific soil area; SWIR, short wave 

infrared; VNIR, visible and near infrared; SNR, signal to noise ratio. 
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