

Go

Ŧ

Contact us

Search the Research Explorer

Search term

Edinburgh Research Explorer

University Homepage
Research
Explorer home
Research outputs
Earlier onset of the Indian monsoon in the late twentieth century: The...

Explorer home

Staff

Research projects

Research outputs

Research activities & awards

Colleges & Schools

Research press coverage

Earlier onset of the Indian monsoon in the late twentieth century: The role of anthropogenic aerosols

Research output: Contribution to journal > Article

Export citation [RIS] [BibTeX]

Overview Citation formats

Massimo A. Bollasina

Yi Ming V. Ramaswamy

Related Edinburgh Organisations

School of Geosciences

Documents

PDF Available Here

2 MB, PDF-document 28/01/14

Links

http://onlinelibrary.wiley.com/doi/10.1002/grl.50719/abstract

Original language	English
Pages	3715-3720
Number of pages	6
Journal	Geophysical Research Letters
Journal publication date	28 Jul 2013
Journal number	14
Volume	40
Early online date	26/07/13
DOIs	http://dx.doi.org/10.1002/grl.50719
State	Published

The impact of the late twentieth century increase of anthropogenic aerosols on the Indian monsoon onset was investigated with a state-of-the-art climate model with fully interactive aerosols and chemistry. We find that aerosols are likely responsible for the observed earlier onset, resulting in enhanced June precipitation over most of India. This shift is preceded by strong aerosol forcing over the Bay of Bengal and Indochina, mostly attributable to the direct effect, resulting in increased atmospheric stability that inhibits the monsoon migration in May. The adjusted atmospheric circulation leads to thermodynamic changes over the northwestern continental region, including increased surface temperature and near-surface moist static energy, which support a stronger June flow and, facilitated by a relative warming of the Indian Ocean, a vigorous northwestward precipitation shift. These findings underscore the importance of dynamical feedbacks and of regional land-surface processes for the aerosol-monsoon link.