

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

Volumes and Issues Contents of Issue 18

Atmos. Chem. Phys., 7, 4733-4749, 2007 www.atmos-chem-phys.net/7/4733/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

Retrieval of stratospheric and tropospheric BrO columns from multi-axis DOAS measurements at Reunion I sland (21° S, 56° E)

N. Theys¹, M. Van Roozendael¹, F. Hendrick¹, C. Fayt¹, C. Hermans¹, J.-L. Baray², F. Goutail³, J.-P. Pommereau³, and M. De Mazière¹ ¹Belgium Institute for Space Aeronomy (IASB-BIRA), Brussels, Belgium ²Laboratoire de L'Atmosphère et des Cyclones (LACy), UMR-CNRS, St-Denis, La Réunion, France

³Service d'Aéronomie, Verrières-le-Buisson, France

Abstract. Spectral measurements of BrO using zenith-sky and off-axis viewing geometries are combined in a linear multiple regression retrieval algorithm to provide stratospheric and tropospheric BrO vertical columns. One year of measurement data are investigated over Reunion-Island (20.9° S, 55.5° E), from August 2004 to June 2005. A comparison between the stratospheric columns retrieved at 45°, 80°, 85°, 87.5° and 92.5° solar zenith angles and photochemical simulations initialized by chemical fields from the 3-D-CTM SLIMCAT and further constrained by observed NO₂ profiles shows a good agreement only by considering a contribution from the very short-lived organic bromine substances to the stratospheric inorganic bromine budget, of 6 to 8 pptv. Furthermore, stratospheric BrO profiles retrieved from late twilight zenith-sky observations are consistent with a total inorganic bromine (Br_v) loading of approximately 23 pptv. This represents 6 to 7 pptv more than can be supplied by long-lived organic bromine sources, and therefore supports an added contribution from very short-lived organic bromine substances as recently suggested in several other studies. Moreover strong evidences are presented for the existence of a substantial amount of BrO in the tropical free-troposphere, around 6 km altitude, possibly supplied by the decomposition of short-lived biogenic bromine organic compounds. Tropospheric BrO vertical columns of $1.1\pm0.45\times10^{13}$ molec/cm² are derived for the entire observation period. Comparisons between ground-based BrO vertical columns and total BrO

Comparisons between ground-based BrO vertical columns and total BrO columns derived from SCIAMACHY (onboard the ENVISAT satellite) nadir observations in a latitudinal band centered around 21° S present a good level of consistency, which further strengthens the conclusions of our study.

■ Final Revised Paper (PDF, 461 KB) ■ Discussion Paper (ACPD)

Citation: Theys, N., Van Roozendael, M., Hendrick, F., Fayt, C., Hermans, C., Baray, J.-L., Goutail, F., Pommereau, J.-P., and De Mazière, M.: Retrieval of stratospheric and tropospheric BrO columns from multi-axis DOAS measurements at Reunion Island (21° S, 56° E), Atmos. Chem. Phys., 7, 4733-4749, 2007. Bibtex EndNote Reference Manager

| EGU Journals | Contact

Copernicus Publications

Search ACP Library Search Author Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 18 Dec 2008: Integrated water vapor above Ny Ålesund, Spitsbergen: a multisensor intercomparison

02 | ACPD, 18 Dec 2008: Energetic particle precipitation in ECHAM5/MESSy1 – Part 1: Downward transport of upper atmospheric NO_x produced by low energy electrons

03 | ACPD, 18 Dec 2008: BVOC ecosystem flux measurements at a high latitude wetland site