Atmospheric Chemistry and Physics

An Interactive Open Access Journal of the European Geosciences Union

Online Library ACP

Home

Recent Final Revised Papers

- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online	Library ACPD

Alerts & RSS Feeds

General Information

Submission

Production

Subscription

Comment on a Paper

Volumes and Issues Contents of Issue 22 Atmos. Chem. Phys., 8, 6627-6654, 2008 www.atmos-chem-phys.net/8/6627/2008/ © Author(s) 2008. This work is distributed

under the Creative Commons Attribution 3.0 License.

An investigation into seasonal and regional aerosol characteristics in East Asia using model-predicted and remotely-sensed aerosol properties

C. H. Song^{1,*}, M. E. Park¹, K. H. Lee^{1,3}, H. J. Ahn¹, Y. Lee¹, J. Y. Kim², K. M. Han¹, J. Kim⁴, Y. S. Ghim⁵, and Y. J. Kim¹ ¹Dept. of Environmental Science and Engineering, Gwangju Institute of Science

²Hazardous Substance Research Center, Korea Institute of Science and

³Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, MD 20742, USA

⁴Department of Atmospheric Science, Yonsei University, Seoul, Korea ⁵Department of Environmental Science, Hankuk University of Foreign Studies, Yongin-si, Gyeonggi-do, Korea

also at: Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Gwangju, Korea

Abstract. In this study, the spatio-temporal and seasonal distributions of EOS/Terra Moderate Resolution Imaging Spectroradiometer (MODIS)derived aerosol optical depth (AOD) over East Asia were analyzed in conjunction with US EPA Models-3/CMAQ v4.3 modeling. In this study, two MODIS AOD products (T_{MODIS}: T_{M-BAER} and T_{NASA}) retrieved through a modified Bremen Aerosol Retrieval (M-BAER) algorithm and NASA collection 5 (C005) algorithm were compared with the AOD ($\tau_{CMAO})$ that was calculated from the US EPA Models-3/CMAQ model simulations. In general, the CMAQ-predicted AOD values captured the spatial and temporal variations of the two MODIS AOD products over East Asia reasonably well. Since T_{MODIS} cannot provide information on the aerosol chemical composition in the atmosphere, different aerosol formation characteristics in different regions and different seasons in East Asia cannot be described or identified by τ_{MODIS} itself. Therefore, the seasonally and regionally varying aerosol formation and distribution characteristics were investigated by the US EPA Models-3/CMAQ v4.3 model simulations. The contribution of each particulate chemical species to τ_{MODIS} and τ_{CMAQ} showed strong spatial, temporal and seasonal variations. For example, during the summer episode, τ_{MODIS} and τ_{CMAQ} were mainly raised due to high concentrations of $(NH_4)_2SO_4$ over Chinese urban and industrial centers and secondary organic aerosols (SOAs) over the southern parts of China, whereas during the late fall and winter episodes, τ_{MODIS} and τ_{CMAQ} were higher due largely to high levels of NH₄NO₃ formed over the urban and industrial centers, as well as in areas with high NH_3 emissions. τ_{CMAQ} was in general larger than $\boldsymbol{\tau}_{\text{MODIS}}$ during the year, except for spring. The high biases $(T_{CMAO} > T_{MODIS})$ may be due to the excessive formation of both $(NH_4)_2SO_4$ (summer episode) and NH₄NO₃ (fall and winter episodes) over China, possibly from the use of overestimated values for NH₃ emissions in the CMAQ modeling. According to CMAQ modeling, particulate NH_4NO_3 made a

| EGU Journals | Contact

Search ACP	
Library Search	•
Author Search	•

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACP, 26 Nov 2008: Technical Note: Adapting a fixed-lag Kalman smoother to a geostatistical atmospheric inversion framework

02 | ACPD, 26 Nov 2008: Springtime warming and reduced snow cover from carbonaceous particles

03 | ACP, 25 Nov 2008: Seasonal changes in gravity wave activity measured by lidars at mid-latitudes

04 | ACP, 24 Nov 2008:

14% (summer) to 54% (winter) contribution to σ_{ext} and τ_{CMAQ} . Therefore, the importance of NH_4NO_3 in estimating τ should not be ignored, particularly in studies of the East Asian air quality. In addition, the accuracy of τ_{M-BAER} and τ_{NASA} was evaluated by a comparison with the AOD ($\tau_{AERONET}$) from the AERONET sites in East Asia. Both τ_{M-BAER} and τ_{NASA} showed a strong correlation with $\tau_{AERONET}$ around the 1:1 line (R=0.79), indicating promising potential for the application of both the M-BAER and NASA aerosol retrieval algorithms to satellite-based air quality monitoring studies in East Asia.

■ <u>Final Revised Paper</u> (PDF, 3884 KB) ■ <u>Discussion Paper</u> (ACPD)

Citation: Song, C. H., Park, M. E., Lee, K. H., Ahn, H. J., Lee, Y., Kim, J. Y., Han, K. M., Kim, J., Ghim, Y. S., and Kim, Y. J.: An investigation into seasonal and regional aerosol characteristics in East Asia using model-predicted and remotely-sensed aerosol properties, Atmos. Chem. Phys., 8, 6627-6654, 2008. Bibtex EndNote Reference Manager