Atmospheric Chemistry and Physics

An Interactive Open Access Journal of the European Geosciences Union

Copernicus.org | EGU.eu

| EGU Journals | Contact

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

indexed

PORTICO

■ Volumes and Issues
■ Contents of Issue 5

Atmos. Chem. Phys., 6, 1181-1184, 2006 www.atmos-chem-phys.net/6/1181/2006/
© Author(s) 2006. This work is licensed under a Creative Commons License.

An improved inlet for precisely measuring the atmospheric ${\rm Ar/N_2}$ ratio

T. W. Blaine, R. F. Keeling, and W. J. Paplawsky Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0244, USA

Abstract. The atmospheric Ar/N $_2$ ratio is expected to be useful as a tracer of air-sea heat exchange, but this application has been hindered in part due to sampling artifacts. Here we show that the variability in $\delta(\text{Ar/N}_2)$ due to thermal fractionation at the inlet can be on the order of 40-80 per meg, and we introduce the use of an aspirated solar shield that successfully minimizes such fractionation. The data collected using this new inlet have a mean diurnal cycle of 1.0 per meg or less, suggesting that any residual thermal fractionation effect is reduced to this level.

■ Final Revised Paper (PDF, 766 KB)
■ Discussion Paper (ACPD)

Citation: Blaine, T. W., Keeling, R. F., and Paplawsky, W. J.: An improved inlet for precisely measuring the atmospheric Ar/N₂ ratio, Atmos. Chem. Phys., 6, 1181-1184, 2006. ■ <u>Bibtex</u> ■ <u>EndNote</u> ■ <u>Reference Manager</u>

Search ACP

Library Search
Author Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 06 Jan 2009: Time-span and spatial-scale of regional new particle formation events over Finland and Southern Sweden

02 | ACPD, 06 Jan 2009: Comment on "Classification of aerosol properties derived from AERONET direct sun data" by G. P. Gobbi et al. (2007)

 $03 \mid ACPD$, $06 \, Jan \, 2009$: Observations of high rates of NO_2 – HONO conversion in the nocturnal atmospheric boundary layer in Kathmandu, Nepal