

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

Atmos. Chem. Phys., 7, 5815-5860, 2007 www.atmos-chem-phys.net/7/5815/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

A new tropospheric and stratospheric Chemistry and Transport Model MOCAGE-Climat for multi-year studies: evaluation of the present-day climatology and sensitivity to surface processes

H. Teyssèdre ¹ , M. Michou ¹ , H. L. Clark ¹ , B. Josse ¹ , F. Karcher ¹ ,
D. Olivié', VH. Peuch', D. Saint-Martin', D. Cariolle ² , JL. Attié ³ ,
P. Nedelec ⁺ , P. Ricaud ⁺ , V. Houlet ⁺ , R. J. Validel A., A. Volz-momas ⁺ , and E. Chéroux ¹
¹ GAME/CNRM (Météo-France, CNRS) Centre National de Recherches
Météorologiques, Toulouse, France
² Centre Européen de Recherches et de Formation Avancée en Calcul Scientifique (CERFACS), Toulouse, France
³ Laboratoire d'Aérologie (Université Toulouse III, CNRS), Toulouse, France
⁴ KNMI (Royal Netherlands Meteorological Institute), De Bilt, The Netherlands
⁵ Institute of Chemistry and Dynamics of the Geosphere, Juelich, Germany
Abstract. We present the configuration of the Météo-France Chemistry and
Transport Model (CTM) MOCAGE-Climat that will be dedicated to the study
of chemistry and climate interactions. MOCAGE-Climat is a state-of-the-art
CTM that simulates the global distribution of ozone and its precursors (82
chemical species) both in the troposphere and the stratosphere, up to the
mid-mesosphere (~70 km). Surface processes (emissions, dry deposition),
convection, and scavenging are explicitly described in the model that has
been driven by the ECMWF operational analyses of the period 2000–2005,
on T21 and T42 horizontal grids and 60 hybrid vertical levels, with and
without a procedure that reduces calculations in the boundary layer, and
with on-line or climatological deposition velocities. Model outputs have
been compared to available observations, both from satellites (TOMS,
HALOE, SMR, SCIAMACHY, MOPITT) and in-situ instrument measurements
(ozone sondes, MOZAIC and aircraft campaigns) at climatological
timescales. The distribution of long-lived species is in fair agreement with
observations in the stratosphere putting aside the shortcomings
associated with the large-scale circulation. The variability of the ozone
column, both spatially and temporarily, is satisfactory. However, because
the Brewer-Dobson circulation is too fast, too much ozone is accumulated
in the lower to mid-stratosphere at the end of winter. Ozone in the UTLS
region does not show any systematic bias. In the troposphere better
agreement with ozone sonde measurements is obtained at mid and high

latitudes than in the tropics and differences with observations are the lowest in summer. Simulations using a simplified boundary layer lead to larger ozone differences between the model and the observations up to the mid-troposphere. NO_x in the lowest troposphere is in general overestimated, especially in the winter months over the Northern Hemisphere, which may result from a positive bias in OH. Dry deposition fluxes of O_3 and nitrogen species are within the range of values reported by recent inter-comparison model exercises. The use of climatological

| EGU Journals | Contact

Search ACP Library Search Author Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACP, 23 Dec 2008: Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer

02 | ACPD, 23 Dec 2008: Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

03 | ACP, 23 Dec 2008: Corrigendum to "Modeling the effect of plume-rise on the transport of carbon monoxide over Africa with NCAR CAM" published in deposition velocities versus deposition velocities calculated on-line had greatest impact on $\rm HNO_3$ and $\rm NO_2$ in the troposphere.

■ <u>Final Revised Paper</u> (PDF, 31415 KB) ■ <u>Supplement</u> (1530 KB) ■ <u>Discussion Paper</u> (ACPD)

Citation: Teyssèdre, H., Michou, M., Clark, H. L., Josse, B., Karcher, F., Olivié, D., Peuch, V.-H., Saint-Martin, D., Cariolle, D., Attié, J.-L., Nédélec, P., Ricaud, P., Thouret, V., van der A, R. J., Volz-Thomas, A., and Chéroux, F.: A new tropospheric and stratospheric Chemistry and Transport Model MOCAGE-Climat for multi-year studies: evaluation of the present-day climatology and sensitivity to surface processes, Atmos. Chem. Phys., 7, 5815-5860, 2007. Bibtex EndNote Reference Manager