

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

Volumes and Issues Contents of Issue 2

Atmos. Chem. Phys., 7, 295-308, 2007 www.atmos-chem-phys.net/7/295/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

Evidence for a CO increase in the SH during the 20th century based on firn air samples from Berkner Island, Antarctica

S. S. Assonov¹, C. A. M. Brenninkmeijer¹, P. Jöckel¹, R. Mulvaney², S. Bernard³, and J. Chappellaz³

 ¹Max Planck Institute for Chemistry, PO 3060, 55020 Mainz, Germany
 ²British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
 ³Laboratoire de Glaciologie et Géophysique de l'Environnement, 54 rue Molière, Domaine Universitaire, BP 96, 38402 St. Martin d'Hères Cedex, France

Abstract. Trends of carbon monoxide (CO) for the past 100 years are reported as derived from Antarctic firn drilling expeditions. Only one of 3 campaigns provided high quality results. The trend was reconstructed using a firn air model in the forward mode to constrain age distributions and assuming the CO increase to be proportional to its major source, namely CH_4 . The results suggest that CO has increased by ~38%, from 38 ± 7 to 52.5 ± 1.5 ppbv over a period of roughly 100 years. The concentrations are on the volumetric scale which corresponds to ~1.08 of the scale used by NOAA/CMDL. The estimated CO increase is somewhat larger than what is estimated from the CO budget estimations and the CH_4 growth alone. The most likely explanation might be an increase in biomass burning emissions. Using CH_3CI as another proxy produces a very similar reconstruction.

■ Final Revised Paper (PDF, 546 KB) ■ Discussion Paper (ACPD)

Citation: Assonov, S. S., Brenninkmeijer, C. A. M., Jöckel, P., Mulvaney, R., Bernard, S., and Chappellaz, J.: Evidence for a CO increase in the SH during the 20th century based on firn air samples from Berkner Island, Antarctica, Atmos. Chem. Phys., 7, 295-308, 2007. Bibtex EndNote Reference Manager | EGU Journals | Contact

Search ACP Library Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 28 Nov 2008: Estimating surface CO_2 fluxes from space-borne CO_2 dry air mole fraction observations using an ensemble Kalman Filter

02 | ACPD, 28 Nov 2008: Comparison of tropospheric chemistry schemes for use within global models

03 | ACP, 28 Nov 2008: Measurements of HNO $_3$ and N $_2O_5$ using ion drift-chemical ionization mass spectrometry during the MILAGRO/MCMA-2006 campaign