Atmospheric Chemistry and Physics

An Interactive Open Access Journal of the European Geosciences Union

| Copernicus.org | EGU.eu |

| EGU Journals | Contact

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

ISI indexed

PORTICO

■ Volumes and Issues
■ Contents of Issue 12

Atmos. Chem. Phys., 8, 3325-3335, 2008 www.atmos-chem-phys.net/8/3325/2008/

© Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License.

Detection of regional scale sea-to-air oxygen emission related to spring bloom near Japan by using in-situ measurements of the atmospheric oxygen/nitrogen ratio

- H. Yamagishi¹, Y. Tohjima¹, H. Mukai², and K. Sasaoka³
- ¹ Atmospheric Environment Division, National Institute for Environmental Studies, Tsukuba, Japan
- ²Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
- ³Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Abstract. We have been carrying out in-situ monitoring of atmospheric O₂/N₂ ratio at Cape Ochi-ishi (COI; 43°10' N, 145°30' E) in the northern part of Japan since March 2005 by using a modified gas chromatography/thermal conductivity detector (GC/TCD). The standard deviation of the O_2/N_2 ratio is estimated to be about ± 14 per meg (≈ 3 ppm) with intervals of 10 minutes. Thus, the in-situ measurement system has a 1σ precision of \pm 6 per meg (\approx 1.2 ppm) for one-hour mean O_2/N_2 ratio. Atmospheric potential oxygen (APO \approx 0₂+1.1 CO₂), which is conserved with respect to terrestrial photosynthesis and respiration but reflects changes in air-sea O_2 and CO_2 fluxes, shows large variabilities from April to early July 2005. Distribution of satellite-derived marine primary production indicates occurrences of strong bloom in the Japan Sea and the latitudinal band between 30° and 40° N in the western North Pacific in April and in the Okhotsk Sea and northeastern region near Hokkaido Island in the North Pacific in June. Back trajectory analysis of air masses indicates that high values of APO, which last for several hours or several days, can be attributed to the oxygen emission associated with the spring bloom of active primary production.

■ Final Revised Paper (PDF, 4079 KB) ■ Discussion Paper (ACPD)

Citation: Yamagishi, H., Tohjima, Y., Mukai, H., and Sasaoka, K.: Detection of regional scale sea-to-air oxygen emission related to spring bloom near Japan by using in-situ measurements of the atmospheric oxygen/nitrogen ratio, Atmos. Chem. Phys., 8, 3325-3335,

2008. ■ <u>Bibtex</u> ■ <u>EndNote</u> ■ <u>Reference Manager</u>

Search ACP

Library Search
Author Search

Nowe

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACP, 11 Nov 2008: Influence of future air pollution mitigation strategies on total aerosol radiative forcing

02 | ACP, 10 Nov 2008: Airborne in-situ measurements of vertical, seasonal and latitudinal distributions of carbon dioxide over Europe

03 | ACP, 10 Nov 2008: Organic composition of carbonaceous aerosols in an aged prescribed fire plume