快速检索 检索 高级检索 首页 稿约信息 编者论坛 编委会 关于本刊 订购本刊 下载中心 研究论文 刘立,胡辉,李娴,黄奂彦,蔡勋江,张国斐.东莞市大气亚微米粒子PM,及其中水溶性无机离子的污染特征[J].环境科学学报,2014,34(1):27-35 东莞市大气亚微米粒子PM₄及其中水溶性无机离子的污染特征。 ## Pollution characteristics of submicron particle PM₁ and its water soluble inorganic ions in Dongguan 关键词: PM₁ 水溶性无机离子 粒子酸性 粒径分布特征 基金项目: 东莞市环境保护局一般专项(No. B11A07006201017); 东莞市高等院校科研机构科技计划项目(No. 2011108102040) 作 者 单位 刘 立 华中科技大学环境科学与工程学院, 武汉 430074 辉 华中科技大学环境科学与工程学院, 武汉 430074 李 娴 东莞市环境保护局, 东莞 523000 黄 奂 彦 东莞市环境科学研究所, 东莞 523000 蔡勋江 东莞市环境监测中心站, 东莞 523000 张国斐 东莞市环境监测中心站, 东莞 523000 摘要:2011年8月—2012年7月期间,利用中流量(100 L・min⁻¹)大气采样器对东莞市A和B两点(A:生活区,B:工业区)进行PM₁、PM_{1~2.5}、PM_{2.5~10}采样,并定 量分析颗粒物上F、CI、NO3、SO4²⁻、NH4⁺、Na⁺、K⁺、Ca²⁺、Mg²⁺等9种水溶性无机离子.分析结果显示,工业区B点的细粒子污染较生活区A点严重,B点PM₁质量浓 度年均值为48 μg・m⁻³,其浓度是A点的1.2倍.A、B两点PM₁对PM_{2.5}和PM₁₀的质量贡献率无明显差异,平均贡献率分别高达69%和45%.二次离子SO₄⁻²、NO₃、NH₄⁺及 与燃烧行为有关的K⁺、Cl⁻等5种离子在细粒子PM₁上富集,这5种离子对PM₁质量的贡献率分别为18.82%~19.76%、4.98%~5.47%、3.98%~4.12%、2.03%~2.27%和 3.39%~3.78%.而其他4种离子, Ca^{2+} 、 Mg^{2+} 、F节和 Na^{+} 积聚在粗粒子 $PM_{2.5\sim10}$ 上. $PM_{10}/PM_{2.5}/PM_{1}$ 三种粒子中, PM_{1} 粒子酸性值AE/CE(阴离子当量浓度/阳离子当量浓 度)比值和硫转化率SOR、氮转化率NOR值均是最高. Abstract: PM₁, PM_{1-2.5}, PM_{2.5-10} samples were collected simultaneously using medium-volume samplers at commercial/residential area (A site) and industrial area (B site) in Dongguan city from August 2011 to July 2012. With respect to the analysis of nine kinds of water-soluble inorganic ions (i.e. F⁻, Cl⁻, NO₄⁻, SO₄²⁻, NH₄⁺, Na⁺, K⁺, Mg²⁺ and Ca²⁺), it was concluded that the pollution of fine particle at B site was more serious than that at A site. An annual average mass concentration of PM₄ at B site was 48 μ g • m⁻³, which was 1.2 times the value of A. The difference in mass contributions of PM₁ to PM_{2.5} and PM₁₀ at A and B site was not obvious, with values of 69% and 45%, respectively. Secondary ions of NO₃⁻, SO₄²⁻ and NH₄⁺, and K⁺ and Cl⁻, indicators of combustion, were all concentrated in submicron particle PM_4 , with contribution ratios to PM_4 mass of $18.82\% \sim 19.76\%$, $4.98\% \sim 5.47\%$. $3.98\% \sim 4.12\%$, $2.03\% \sim 2.27\%$ and $3.39\% \sim 3.78\%$, respectively. Moreover, the other four ions, i.e. Ca^{2+} , Mg^{2+} , F^{-} and Na^{+} , were concentrated in coarse particle $PM_{2.5-10}$. With respect to the three particles PM_{10} , $PM_{2.5}$ and PM_{1} , the values of AE/CE ratios, SOR and NOR of PM₄ were the highest. Key words: PM₁ water-soluble inorganic ions particulate acidity size distribution 摘要点击次数: 134 全文下载次数: 219 ## 您是第4057053位访问者 主办单位: 中国科学院生态环境研究中心 单位地址: 北京市海淀区双清路18号 邮编: 100085 服务热线: 010-62941073 传真: 010-62941073 Email: hjkxxb@rcees.ac.cn 本系统由北京勤云科技发展有限公司设计