CHINESE JOURNAL OF GEOPHYSICS

文章快速检索

留 言 板

English

地球物理学报 » 2013, Vol. 56 » Issue (1): 38-46 doi: 10.6038/cjg20130104

空间物理学★大气物理学★重力学与大地测量学

最新目录 | 下期目录 | 过刊浏览 | 高级检索

期刊订阅 | 广告合作 |

◀◀ 前一篇

联系我们

6-E N

引用本文(Citation):

毕云,许利,周任君,陈月娟,易明建,邓淑梅.N₂O增加对大气环境影响的模拟及其与甲烷和平流层水汽影响的比较. 地球物理学报,2013,56(1):38-46,doi:10.6038/cjg20130104

BI Yun, XU Li, ZHOU Ren-Jun, CHEN Yue-Juan, YI Ming-Jian, DENG Shu-Mei.Simulation of influence of N₂O's increase on atmospheric environme and comparison with the influences of methane and stratospheric water vapor.Chinese Journal Geophysics,2013,56(1): 38-46,doi: 10.6038/cjg20130104

N2O增加对大气环境影响的模拟及其与甲烷和平流层水汽影响的比较

首页 | 期刊介绍 | 编委会 | 投稿指南 |

毕云1, 许利1, 周任君1, 陈月娟1, 易明建1, 邓淑梅2*

- 1. 中国科学技术大学地球和空间科学学院, 合肥 230026;
- 2. 安徽省气象科学研究所, 合肥 230031

Simulation of influence of N₂O's increase on atmospheric environment and comparison with the influences of methane and stratospheric water vapor

BI Yun¹, XU Li¹, ZHOU Ren-Jun¹, CHEN Yue-Juan¹, YI Ming-Jian¹, DENG Shu-Mei²*

- 1. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China;
- 2. Anhui Institute of Meteorological Sciences, Hefei 230031, China

摘要 参考文献 相关文章

Download: PDF (2385 KB) HTML (0 KB) Export: BibTeX or EndNote (RIS) Supporting Info

摘要

本文利用美国国家大气环境中心(NCAR)的二维化学、辐射和动力相互作用的模式(SOCRATES),模拟了大气中 N_2 O增加对 O_3 和温度的影响,并从化学、辐射和动力过程讨论了影响原因,此外还与大气甲烷和平流层水汽增加对大气环境的影响进行了对比.分析表明: 大气中 N_2 O浓度增加以后,将通过化学过程引起30 km以上 O_3 损耗,30~40 km损耗较多; 30 km以上降温明显,下平流层中低纬度地区以及对流层 O_3 增加并有微弱升温; 30~40 km附近,北半球中高纬地区 O_3 减少以及降温幅度都大于南半球,对流层升温主要是 N_2 O和 O_3 增加所致,而平流层温度变化主要受 O_3 控制,北半球中高纬地区动力过程对温度变化的反馈较其它地区明显,这种反馈对平流层中高层北半球中高纬地区温度和 O_3 的变化都有明显影响。大气中甲烷增加引起的 O_3 损耗在45 km以上,45 km以下 O_3 增加,平流层水汽增加会引起40 km以上 O_3 减少,20~40 km大部分地区 O_3 增加。 N_2 O增加造成的 O_3 损耗正好位于臭氧层附近,其排放对未来 O_3 层恢复至关重要。 N_2 O增加引起下平流层 15~25 km中低纬度地区有弱的升温,这与其它温室气体增加对该地区温度的影响不同, CO_2 , CH_4 和 H_2 O等增加后下平流层通常是降温。

关键词 温室气体,臭氧,平流层化学,剩余环流,NCAR 模式

Abstract:

A sensitivity experiment, with the increasing N_2 O volume mixing ratio, was carried out to study the influence of an increase of N₂O on O₃ and temperature using the 2D interactive chemical radiative dynamical (SCORATES) model of the National Center for Atmospheric Research, and the reasons for ${\sf O}_3$ and temperature change were analyzed from chemistry, radiation and dynamical processes. Moreover, the differences in influences on the atmospheric environment of methane and water vapor increase as well as $\mathrm{N}_2\mathrm{O}$ increases were compared. The results show that when N_2O concentration increases, the chemical process results in O_3 depletion over 30 km, and the high value appear between 30 and 40 km. The cooling is obvious over 30 km, the $m O_3$ increase and slight warming appear at middle-lower latitudes in the lower stratosphere and troposphere. The extents of ozone decrease and cooling over 30~40 km are larger at middle-high latitudes in the North Hemisphere than in the South Hemisphere. The tropospheric warming is mainly caused by the increases of $\rm N_2O$ and $\rm O_3$, while the temperature change in the stratosphere is mainly dominated by ${
m O_3}.$ The dynamical feedback to temperature change is more distinct at middle-high latitudes in the Northern Hemisphere than in other regions and significantly affects temperature and ozone in the middle-high stratosphere at middle-high latitudes in the Northern Hemisphere. Whereas the O_3 depletion caused by methane increase appears above 45 km, and the O_3 increases below 45 km. The stratospheric water vapor increase can result in the $m O_3$ depletion above 40 km, and the $m O_3$ increases in the most of between 20 and 40 km. The O_3 depletion caused by N_2O increase appears right near the O_3 layer, and its emission is very important to the future ${
m O_3}$ layer recovery. The slight warming caused by ${
m N_2O}$ increase appears

Service

■ 把本文推荐给朋友 ■ 加入我的书架

■加入引用管理器

Email Alert

RSS

作者相美文章

毕云

许利周任君

陈月娟

易明建

邓淑梅

from 15 to 25 km at middle and low latitudes, however the increase in CO_{2} , CH_{4} , and stratospheric water vapor can respectively lead to cooling there.

Keywords Greenhouse gas, Ozone, Stratospheric chemistry, Residual circulation, NCAR model

Received 2012-06-27;