<u>Geoscientific Model Development</u> An interactive open-access journal of the European Geosciences Union

EGU Journals	EGU.e
Manuscript tracking	
About	
Editorial board	
Articles GMD	
Recent final revised papers	
 Volumes and issues 	
 Special issues 	
Full text search	
Title and author search	
Articles GMDD	
Highlight articles	
Subscribe to alerts	
Peer review	
For authors	
For reviewers	
	_
User I D	
Password	
New user? Lost login?	
Follow	

@EGU_GMD

Journal metrics

Abstracted/indexed

- Science Citation Index Expanded
- Current Contents/PCE
- Scopus
- ADS
- Chemical Abstracts
- CLOCKSS
- CNKI
- DOAJ
- EBSCO
- GBA
- Gale/Cengage
- GeoBase
- GeoRef
- Google Scholar
- J-Gate
- Portico
- ProQuest
- World Public Library

Geosci. Model Dev., 7, 2639-2651, 2014 www.geosci-model-dev.net/7/2639/2014/ doi:10.5194/gmd-7-2639-2014 © Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 License.

Model Description Paper

Article Metrics

Related Articles

11 Nov 2014

The implementation of the CLaMS Lagrangian transport core into the chemistry climate model EMAC 2.40.1: application on age of air and transport of long-lived trace species

C. M. Hoppe^{1,*,**}, L. Hoffmann², P. Konopka¹, J.-U. Grooß¹, F. Ploeger¹, G. Günther¹, P. Jöckel³, and R. Müller¹ ¹Institute of Energy and Climate Research (IEK-7), Forschungszentrum Jülich GmbH, Jülich, Germany ²Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Jülich, Germany ³Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany ^{*}now at: Institute of Energy and Climate Research (IEK-8), Forschungszentrum Jülich GmbH, Jülich, Germany ^{**}now at: Rhenish Institute for Environmental Research, University of Cologne, Cologne, Germany

Received: 25 Feb 2014 – Published in Geosci. Model Dev. Discuss.: 17 Mar 2014 Revised: 21 Sep 2014 – Accepted: 07 Oct 2014 – Published: 11 Nov 2014

Abstract. Lagrangian transport schemes have proven to be useful tools for modelling stratospheric trace gas transport since

they are less diffusive than classical Eulerian schemes and therefore especially well suited for maintaining steep tracer gradients. Here, we present the implementation of the full-Lagrangian transport core of the Chemical Lagrangian Model of the Stratosphere (CLaMS) into the ECHAM/MESSy Atmospheric Chemistry model (EMAC). We performed a 10-year time-slice simulation to evaluate the coupled model system EMAC/CLaMS. Simulated zonal mean age of air distributions are compared to age of air derived from airborne measurements, showing a good overall representation of the stratospheric circulation. Results from the new Lagrangian transport scheme are compared to tracer distributions calculated with the standard flux-form semi-Lagrangian (FFSL) transport scheme in EMAC. The differences in the resulting tracer distributions are most pronounced in the regions of strong transport barriers. The polar vortices are presented as an example for isolated air masses which are surrounded by a strong transport barrier and simulated trace gas distributions are compared to satellite measurements. The analysis of CFC-11, N₂O, CH₄, and age of air in the polar vortex regions shows that the CLaMS Lagrangian transport scheme of EMAC. Differences in simulated age of the polar vortex than the FFSL transport scheme of EMAC.