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Abstract. We explore the use of dry total energy norm in numerical weather prediction (NWP), the aim is also to in-
improving numerical weather prediction (NWP) model fore- crease the predictive skill. Tuning procedures in modeling are
cast skill. The Ensemble Prediction and Parameter Estimapredominantly manual and there are no generally applicable
tion System (EPPES) is utilized to estimate ECHAMS at- or accepted algorithmic tools in everyday use. One reason is
mospheric GCM (global circulation models) closure param-that in multiscale and multiphase systems the model response
eters related to clouds and precipitation. The target criteriorto closure parameter variations is very nonlinear and general
in the optimization is the dry total energy norm of 3-day nonstationary inverse problem tools can fail. Therefore re-
forecast error with respect to the ECMWF (European Cen-sults may be promising in idealized cases but this does not
tre for Medium-Range Weather Forecasts) operational analyseem to carry on to more demanding real-world estimation
ses. The results are summarized as follows: (i) forecast errocases. This difficulty is nicely illustrated i&chirber et al.
growth in terms of energy norm is slower in the optimized (2013, where the inverse problem realism is gradually in-
than in the default model up to day 10 forecasts (and becreased from a synthetic to fully realistic estimation in case
yond), (i) headline forecast skill scores are improved in theof an atmospheric general circulation model. The parameter-
training sample as well as in independent samples, (iii) theaugmented state filter works well in an idealized setup but is
decrease of the forecast error energy norm at day three iess successful in realistic estimation cases.
mainly because of smaller kinetic energy error in the trop- The aim of this paper is by no means to declare that a fi-
ics, and (iv) this impact is spread into midlatitudes at longernal solution has been found to this generic problem. Some
ranges and appears as a smaller forecast error of potential esticcess has nevertheless been obtained by applying the so-
ergy. The interpretation of these results is that the parametetalled Ensemble Prediction and Parameter Estimation Sys-
optimization has reduced the model error so that the forecastem (EPPESJarvinen et a).2012 Laine et al, 2012. We
remain longer in the vicinity of the analyzed state. have reported earlie@(linaho et al, 20133 that the EPPES
algorithm is able to recognize models with superior perfor-
mance with respect to a given target criterion, even in case
of a highly tuned system of full complexity, such as the In-
1 Introduction tegrated Forecasting System (IFS) of the European Centre
for Medium-Range Weather Forecasts (ECMWF). EPPES
Tuning of closure parameters in atmospheric modeling is §s thus clearly a good candidate for a general-purpose tun-
recurring topic. In research, the aim is to improve physicaling algorithm. The remaining key question is the definition
realism of subgrid-scale physical processes and to maintaigf 5 proper target, the optimization of which can lead to a

or improve the general model behavior, such as reproductionnjyocal improvement of the model performance. Targeting
of observed variability. In operational applications, such as

Published by Copernicus Publications on behalf of the European Geosciences Union.



1890 P. Ollinaho et al.: Optimization of NWP models using energy norm as target

Table 1. ECHAMS5 closure parameter subset used in model opti- variations, sampled via the EPPES algorithm, represent the

mization. model error.
The EPPES algorithm was introduced liaine et al.
Parameter  Description (2012, who also demonstrated the algorithm use with a
CAULOC A parameter influencing the accretion of cloud ~ Stochastic version of the Lorenz-95 modebienz 1996
droplets by precipitation (rain formation in Wilks, 2005. The EPPES algorithm approaches the prob-
stratiform clouds). lem of estimating model parametérdy assuming it to be a
CMFCTOP  Relative cloud mass flux at the level above realization from a background parameter uncertainty distri-
nonbuoyancy (in cumulus mass flux scheme).  pution that is approximated by a multivariate Gaussian dis-
CPRCON A coefficient for determining conversion from tribution, with a mean vectqe (of dimensionp) and ap x p

cloud water to rain (in convective clouds).

; ) covariance matrixx. For each time window, the optimal
ENTRSCV Entrainment rate for shallow convection.

parameterd];, are a sample from this distribution as

0, ~N(u,X),i=12,... (1)

improvements in all model fields would assure a model-wide The estimation problem is thus shifted to estimating these
improvement, but the construction of correct weights for theunknown, but static in time, distribution parameters (or hy-
all the variables would be impractical. However, a too simple perparameters). The mean of the distributiosorresponds
target is not likely to lead to a univocally improved model. to parameter values that perform best on average considering
This paper presents atmospheric dry total energy norm as all weather types, seasons, etc., @hdhdicates how much
target for model optimization. In recent years, various energythese values vary between time windows due to inaccurate
norms have appeared in NWP literature mainly in the contexiparametrization schemes and other modeling errors. Thus,
of seeking the fastest growing structures to be used as iniprovides objective information about uncertainties related to
tial state perturbations in ensemble prediction systems (e.gthe estimated parameters.
Farrel 1988 Palmer et al.1994 Errico, 2000, as well as The algorithm first draws a sample from an initial distri-
in forecast sensitivity studies (e.Gelaro et al.1998 Orrell bution, and these parameter values are used in an ensemble
etal, 2001 Mitchell et al, 2002. Here we apply the dry total of forecasts. The likelihood of each forecast is then evalu-
energy norm in the opposite sense of the former: we seek ated with respect to given criteria, and each parameter vector
model which tends to have the slowest possible forecast errais weighted by the likelihood. A resample is drawn from the
growth in terms of dry total energy norm. As the energy normweighted parameter sample, favoring parameter values asso-
is computed as an integral over the entire model atmosphereiated with high likelihood (known as importance sampling).
it is not selective to any particular model variable, level, or Finally, the hyperparametegs and X are updated with the
geographical region. Itis thus a potentially powerful target. weighted sample. A new sample is then drawn for the next
time window from the updated distribution. The algorithm
steps can be written are as follows:

1. Initialize the hyperparametepsy and Xo. The distri-
bution N(ug, Xo) acts as the prior fof for the first
time window and as the proposal distribution for the first
sample.

2 Experiment configuration

The ECHAMbS.4 atmospheric general circulation model
(Roeckner et a).2003 is used here with a coarse hori-
zontal resolution of T42 and 31 vertical layers, the model

top being at 10 hPa. We consider the same four closure pa- 2. Foreach time instandedraw a sample of proposed val-

rameters (Tablel) that were estimated i®llinaho et al.
(2013h, and studied inJarvinen et al(2010. These influ-
ence parametrized clouds and precipitation, and, even though
considered here only from the NWP viewpoint, they are also
of great interest when considering the model climatology.

A more complete description of the ensemble prediction
system (EPS) emulator is given in detail @linaho et al.
(20131. A concise overview is provided in the following: the
operational ensemble of initial states produced by ECMWF
EPS (ENS) has been used to generate initial uncertainties.
A total of 50 perturbed initial states, as well as the con-
trol state, are used for twice-daily (00:00 and 12:00UTC
— universal time coordinated) forecasts over a period of 3
months (January—March 2011). The initial-time parameter
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3.

5. Make a weighted resample

ues for the parameteés — call themﬁf — from the mul-
tivariate Gaussian distribution‘}'i' ~N(_1,Xi-1);
j=1,...,nens Wherenensis the ensemble size.

Using the parameteés,j, generate an ensemble of pre-
dictions.

4. Evaluate the fit of each ensemble member with the cost

function J((?f) and calculate the importance weights

P ~ Nens .
w! ocexp(—17(8))), such that)_ w/ = 1.
j=1
(ﬁfij using the weights
w(éf) as 0‘1.", j=1,...,nens and use the sample to
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update the hyperparametejs (X;) by the EPPES up- The ECMWEF operational analyses are used in computa-
date formulae (sekaine et al, 2012 tion of Eq. @). The target criterion, or cost function, for the
EPPES estimation is then the forecast error from the analysis,

6. For the next time window-+1, specify the proposal dis-  {ha norm being the dry total energy norm.

tribution for parameteé; 1 asN(u;, X;) and go back
to step 2. J(0) = wAE?#), ()

The initial distribution is defined according to expert WhereAE? denotes the energy state difference between the
knowledge (“Prior” in Tabl€). Default model parameter val- analysis and a 72 h forecast, ands an ad hoc scaling term
ues provide practical values far,. The initial time parame-  (a value of ¥6(J/kg nf Pa) is used here). The scaling
ter uncertaintieX o can be set rather freely, though too small term widens or narrows down the probability density func-
or too large uncertainties will slow down the estimation pro- tion (pdf) of the analysis field errors. It acts to prevent (i) that
cess. If no prior information about parameter correlations isthe ensemble member with the best fit to the analysis would
available, a diagonal matrix can be used. The estimation prosolely affect the distribution update, and (i) that all ensem-
cess will reveal potential parameter covariances. Parametdile members would appear as likely. The 72 h forecast range
bounds are also set to prevent the selection of unrealistic pds selected because it is beyond the tangent-linear regime of
rameter values (Tabl?). the system and not seriously affected by the spin-up/down of

the model hydrology, and not yet affected by the nonlinear

forecast error saturation.
3 Total energy norm

3.2 Model sensitivity
3.1 Target criterion

o _ . We first study (i) how the model performs in terms of energy
The dry total energy norm in discretized form can be written norm, and (i) how much impact the initial state and parame-

as ter perturbations have on forecasts with respect to the energy
1 norm. Figurel illustrates the ensemble spread of the zonal

AE == ZZ ((Au)2+ (Av)? + C_P(AT)Z) dAdp mean energy norm at a 72 h forecast range, averaged over
2 70 A Iy 15 days (1-15 January 2011). We divide the dry total energy

1 ) norm (dark blue) into surface pressure (light blue), temper-
+ ERdTrPrZ(N”Psfc) dA. (2)  ature (dark green) and kinetic energy (light green) terms in
A order to better understand the respective contributions to dry

Here,u andv denote the zonal and meridional wind com- total energy norm variability. The width of the colored area
ponents.T the temperature, and jay. the logarithmic sur- ~ '€presentst two standard deviations (SD) from the mean,
face pressureAS indicates difference between two atmo- thus n_1d|cat|ng the impact of initial state and parameter per-
spheric states; i.eAS = San— Stc, Where subscripts denote turbatlpns on t_he system. Moreover, the mean (continuous
analysis (an) and model forecast (fc). is the specific heat bIaqk lines) indicates how far the forecast is from the analy-
at constant pressurgq the gas constant of (dry) alf; aref- ~ Ses in general. _
erence temperature (280 K); a reference surface pressure  1he largest mean forecast error of the dry total energy is
(1000 hPa) and 4l the areal element of the model grigh & in the midlatitudes, especially so in the Northern Hemisphere
the pressure difference between two pressure levels, we ud80 to 60 N), where all three energy norm terms also reach
dp = 1 throughout the atmosphere. Thus every model layetheir individual maximum values. There is also an increased
has the same weight in the summation. This treatment eménsemble spread associated with both of the hemispheric
phasizes the surface pressure term since the corpecald maxima as W_eII asin the tropics (sh|ft_eql _sllghtly towards the
ues in ECHAMS5 with 31 vertical model levels vary between Summer hemisphere). The impact of initial state and param-
10 and 50 hPa. eter perturbations separately to the spread of dry total energy

The first two terms in the right-hand side of EB) (« and ~ NO'M was also tested by running the model with only one
v) are identifiable as kinetic energy, and the thift) @nd ~ Perturbation type active at a time. Figizehows the ensem-
fourth (Inpsic) terms as available potential enerdyotenz pl_e_ spread caused by the co_mblned _effect of_ parameter and
1955 1960. Equation @) can also be extended to include a initial-state perturbations (thick continuous lines), as well
term related to the latent energy. We have restricted this stud@S the independent contributions of parameter perturbations
to the dry total energy norm. Optimal inclusion of the latent (thin continuous lines) and initial-state perturbations (dashed

energy term requires defining a vertically changing Weight_lines). The spread of the dry total energy (total), and the indi-
ing term (sedarkmeijer et al.2001). vidual spread of surface pressure (surf pres), temperature and

kinetic energy (kinetic) terms are shown. The separate contri-
butions to the dry total energy norm are as follows: parameter
variations dominate in the tropics, initial state perturbations
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Table 2. Parameter values for ECHAMS5 (T42L31) in EPPES tests.

Parameter Prior Bounds Posterior
mean SD mean SD

CAULOC 2.0 7.0 0-30 10.79 4.29

CMFCTOP 0.3 0.2 0-1.0 0.42 0.12

CPRCON  15¢107% 4.0x10°3 0-15x10"2 3.63x10°3 1.43x10°3
ENTRSCV 3.0x107% 1.0x103 0-50x103 2.12x10% 0.91x107%

80

I e — The mean error in the kinetic energy term has also multiple
Tomporming. maxima: one in the midlatitudes in each hemisphere, and one
or Kinetic ] in the tropics. The ensemble spread is large at all latitudes.
Parameter perturbations dominate the spread in the tropics
and extratropics, while initial state perturbations dominate

60 -

w
350 1 in the southern midlatitudes. In the northern midlatitudes,
E initial-state and parameter perturbations generate roughly the
g 4oy 7 same amount of ensemble spread.
s
g 30
i
4 Results

20

4.1 Parameter evolution

== . . . T The evolution of the parameter subset from 1 January to
%08 608 05 e N 6ON ON 31 March 2011 (2011JFM) is shown in Fig. The parame-

ter perturbation distribution mean(continuous line), width
Figure 1. Mean error and ensemble spread of zonally averaged(+ two times the standard deviation; thin dashed lines), and
and areal-weighted energy norm (unit J/k§a) for 15 days (1-  default parameter values (thick dashed line) are presented.
15 January 2011) from a +72 h forecast. Dry total energy norm (darka vertical column of markers represents a set of 50 pa-
blue), and individual terms: surface pressure (light blue), tempera; ;meter values evaluated at the corresponding date, and the
ture (dark green) and kinetic energy (light green). Continuous blac arker shading is indicative of the importance weight in the
line indicates the mean model error. Width of the colored area rep-distribution update. Two of the parameters (CAULOC and
resentst two standard deviations from the mean. . N . -

CPRCON) shift fairly quickly to higher parameter values,
followed by saturation. CMFCTOP and ENTRSCV, how-

dominate in the Southern Hemisphere, and both sources al&yer, change more conservatively throughout the evaluation

ap_lgfrr]oxma;[ely equal in the Nortl;]ern I-r|]em|sphere. eriod. The posterior distribution meanand standard devi-
e surface-pressure term has three mean error MaXsiqn after the final iteration are given in Tal2e

ima: two in the Southern Hemisphere (22 and 8Dpand a

broader one in the Northern Hemisphere (358Y. The 42 \validation

peaks at 22S and 38N, namely the Andes and the Hi-

malayas regions, are caused by orographical differences bet 2.1  Skill scores

tween ECHAMS and the originally higher-resolution analy-

sis data. Ensemble spread is the largest within the peak affo validate the parameter distributions, the model is run ap-

eas of 60 S and 40-57N. The southern hemispheric max- plying the parameter posterior mean values. Three time peri-

imum is dominated by initial state perturbations, whereas inods are covered: (i) the dependent period of 2011JFM, (ii) an

the Northern Hemisphere both perturbations have an equahdependent period of April 2011 (2011A), and (iii) an in-

effect. dependent period of January to March 2010 (2010JFM). We
The temperature term has the least spread. The mean fist study how the optimized model compares with respect

quite flat with respect to latitude, but at higher latitudes theto the target criterion. Figuré represents the energy norm

model deficiencies start to appear, especially in the Northermifferences between the default and optimized model for the

Hemisphere. The ensemble spread of the temperature terthree time periods and up to forecast day 10. The mean dif-

remains relatively small at all latitudes, and is governed byference (continuous line) and the 95 % confidence interval of

the initial state perturbations in the extratropics and by pa-the mean (gray vertical bars; the bar width is two times the

rameter variations in the tropics. standard deviation of the differences divided by the square

Geosci. Model Dev., 7, 188%90Q 2014 www.geosci-model-dev.net/7/1889/2014/
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Figure 2. Ensemble spread (two times the standard deviation; unit #k@gnat forecast day three averaged over 30 ensembles. Spread

of dry total energy norm (total), and surface pressure (surface pres), temperature and kinetic energy (kinetic) terms. Experiments with only
parameter perturbations active (thin continuous lines), only initial state perturbations active (dashed lines), and both sources of uncertainty
active (thick continuous line).

root of number of cases) are shown. The first thing to note ighe second independent sample the ACC is mostly neutral
that the energy norm at forecast day three for 2011JFM is imwith some statistically insignificant improvements for fore-
proved at the 95% confidence level, implying that the EPPESast ranges beyond 7 days.
algorithm is able to find a model that is improved with re-
spect to the target criterion. In fact, there is an improvement4.2.2 Scorecard
at all ranges. The energy norm improvement is statistically
significant also for forecast ranges beyond 2 days in the inA more general validation of the model changes with the op-
dependent sample 2011A, and beyond 5 days in the 3-montfimized parameters is provided by a scorecard (6#gc). It
sample 2010JFM. is a concise but comprehensive presentation of a large num-
Next, the model is validated against the standard headber of scores for various geographical regions, variables, lev-
line score of 500 hPa geopotential height. In addition to theels, and forecast ranges. The notation is such that green (red)
RMSE (root mean square error), the anomaly correlation co<olors indicate the optimized model scoring better (worse)
efficient (ACC) is also shown. ACC is a verification quan- than the default model. Small and large arrowheads point-
tity which is sensitive to the forecast patterns. Notation ising up (down) indicate the result is significant at the 95 or
the same in Figs4 and 5. Positive values for both RMSE 99 % confidence level, respectively, for the optimized (de-
and ACC indicate where the optimized model is performing fault) model to score better. White boxes indicate the models
better than the default one. The RMSE scores for all thregperforming equally well.
data sets are improved at the 95% confidence level for all The main features of Fia-c are as follows. First, RMSE
forecast ranges. Interestingly, the mean RMSE scores of thecores of all forecast fields (with exception of temperature
independent sample of 2011A are improved more than in theat 100 hPa) in the Northern Hemisphere are improved be-
dependent sample. ACC scores in the dependent sample ayend a forecast range of 2 days. In the Southern Hemisphere
improved for forecast ranges longer than 2 days, and stathe same holds at forecast ranges longer than 3.5 days. ACC
tistically significantly at forecast ranges of 2.5-8 and 9.5—scores in the Northern Hemisphere closely follow those of
10 days. The ACC scores are also improved from forecasthe RMSE, whereas, in the Southern Hemisphere, wind fields
day five onwards for the independent sample of 2011A, al-at the 2.5-4.5 day range and cloud cover at upper levels differ
though this does not hold at the 95 % confidence level. Foifrom their respective RMSE improvements. There is a gen-
eral improvement in RMSE scores for the tropics, with the
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Figure 3. Evolution of parameter subsets from 1 January 2011 to FORECAST DAY

31 March 2011. The distribution mean(continuous line)+ two Figure 4. Energy norm differences (unit J/kgzlﬁ’a) between de-
times the standard deviations (thin dashed lines), and default paramg, it and optimized model. Top panel: dependent sample (January—
eter value (thick dashed line). A vertical column of markers rep- \,o.h 2011), middle panel: independent sample of April 2011, bot-
resents parameter values evaluated at the corresponding date, the panel: independent sample of January—March 2010. Mean dif-

marker shading is indicative of the weighting in the distribution up- ference (continuous line) and 95 % confidence interval of the mean
date. For clarity only every fourth ensembile is plotted. (grey bars).

exception of geopotential height at the forecast range of 3-southern Hemisphere (25-58). In the tropics, the surface

7 days at 1000 and 850 hPa levels, temperature at the 100 hipgessure term displays oscillations arising from orographi-
level, and surface temperature. The ACC scores for the tropcally induced noise as the analysis data are at higher resolu-
ics are affected similarly to the RMSE scores; the exceptiontion than the forecasts, and the term stays negative exclud-
being cloud fraction, which is negatively affected at nearly ing the high latitudes (south of 55 and north of 45N).

all forecast ranges. The temperature term displays a broad positive signal for
) o all latitudes. Improvements in the tropics are dominated by
4.2.3  Geographical validation the kinetic energy, with positive impacts for all latitudes ex-

. . .. pect 25-50S. Figure9 represents the vertical distribution

Next, the geographical distribution of the energy norm dif- ¢ 16 5 onally averaged total energy norm (EN) differences
ferences between the optimized and default models are presoqyeen the default and optimized model. Positive values in-
sented. The kinetic energy mean forecast difference for dayjicate where the optimized model is performing better. The
three forecasts from 2011JFM is shown in Fig.Positive onica)| total EN improvements seen in Figa are located
values indicate where the optimized model is better than th§, ., een 850 and 150 hPa layers. The biggest improvements
default model. The main improvements are concentr_ated Nre found in the upper troposphere centered around 200 hPa,
the tropics (Southeast Asia, the western coasts of Africa an%nd lower in the troposphere around 700 hPa. The largest
Sou_th America). A weakly pos_ltlve region s close to the At- extratropical improvements occur between 400 and 300 hPa
lantic storm track. The Atlantic and Indian oceans aroundy esqure Jevels. The southern hemispheric degradation is sit-
40 S are somgwhat degraded. uated near the tropopause above 100 hPa.

Flgurg 8a-c |IIu_strate the zonally averaged mean energy At longer forecast ranges, the improvements are spread
norm difference in the dependent sample (2011JFM) forfromthe tropics to the midlatitudes and grow larger. By fore-
forecast ranges of 3, 6, and 10 days (F#g—C, respec- .t qay six (Fig8h), the largest values are at midlatitudes

tively). The total energy norm (dark blue), and surface pres-,,q 4re dominated by the kinetic energy term, and later by

sure (light blue), temperature (dark green) and kinetic energyne surface pressure term (FBE). Note the different scale
(light green) terms are presented. The mean error (continug, e panels of Figa-c.

ous black line), and the 95 % confidence interval of the mean
(width of the colored area) are also shown.
At forecast day three (Figa), most of the improvements 5 Discussion
in the dry total energy take place in the tropical belt, but
there is also a favorable impact on the northern midlati-The EPPES methodology was able to find a parameter set
tudes (north of 45N). A forecast degradation is seen in the corresponding to an improved model with respect to the

Geosci. Model Dev., 7, 188%90Q 2014 www.geosci-model-dev.net/7/1889/2014/
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Figure 5. The 500 hPa geopotential height difference. Left panels: RMSE (default minus optimized model; unit m), right panels: ACC
(optimized minus default model). Top panels: dependent sample (January—March 2011), middle panels: independent sample of April 2011,
bottom panels: independent sample of January—March 2010. Mean difference (continuous line) and 95 % confidence interval of the mean
(gray bars).
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Figure 6a. A forecast validation scorecard for 180 forecast cases between 1 January and 31 March 2011 for the Northern Hemisphere.
Forecast performance is color-coded as follows: green is good for the optimized model while red is good for the default model. Small (large)

arrowheads indicate the 95 % (99 %) level of statistical significance of the score difference. The first column indicates the area, second the
variable, third the pressure level, and the fourth and fifth columns RMSE and ACC scores for forecast days 1-10.
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Figure 6b. As Fig.6a but for the Southern Hemisphere.
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Figure 6¢. As Fig. 6a but for the tropics.
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target criterion, and thus demonstrates that the algorithmmodel seems to outperform the default model the longer the
works as intended. This improvement is not confined to theforecast lead time is. This indicates that the optimization
sampling period, as itis also present in the independent sanprocedure has managed to reduce the model error since the
ple 2011A, and to some extent also in the 2010JFM sampleforecasts are launched from the same initial conditions. Fig-
Figure4 illustrates how the optimized model stays closer ure 8aindicates that the model error reduction primarily af-
to the verifying analyses than the default model. The energyfects the evolution of kinetic energy in the tropical region in
norm is optimized at day three but the improvements arethe forecasts of up to 3 days. This is likely to be because
also maintained at longer forecast ranges, and the optimizethe set of four parameters optimized here mostly impacts
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Figure 7. Forecast day three kinetic energy mean difference (unit
J/kgrr?Pa) of the optimized and default model from January to

March 2011. Positive values indicate improved day three forecasts

after parameter optimization.
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Figure 8a. Zonally averaged and areal-weighted energy norm dif-
ference (unit J/kg MiPa) between the default and optimized models
from January to March 2011 for forecast day three. Dry total en-
ergy norm (dark blue), and surface pressure (light blue), tempera
ture (dark green) and kinetic energy (light green) terms individually.

Continuous black line indicates the mean error, and width of the col-

ored area represents the 95 % confidence interval of the mean.

convective circulation in the tropics. After the 3-day opti-
mization period, the tropical kinetic energy improvements

spread by nonlinear model dynamics into the midlatitudes

(Fig. 8b), and begin also to appear as improvements in th
distribution of potential energy via the surface pressure term
Note, that there is a tropical maximum in the kinetic energy
distribution at day six (Fig8b). The interpretation of this
maximum is that the reduced model error continues to oper
ate in the tropics and feeds more realistic kinetic energy evo
lution via better tropical circulation throughout the 10-day
forecast range.

www.geosci-model-dev.net/7/1889/2014/

€

1897

" Total memm
Surface pres
Temperatyge mm—

ENERGY NORM DIFFERENCE

60S 308 30N 60N 90N
LATITUDE

Figure 8b. As Fig. 8a, but for forecast day six.
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Figure 8c. As Fig. 83 but for forecast day 10.

Ollinaho et al.(2013h estimated the same ECHAMS5
model parameters as here with the EPPES methodology but
using a mean-squared forecast error of the 500 hPa geopo-
tential height at forecast days 3 and 10 as a target criterion.
Those experiments showed that the EPPES methodology is
capable of optimizing a given target in an atmospheric GCM
of full complexity. The posterior mean parameter values of
Ollinaho et al(2013h are within two standard deviations of
the values found here. In particular, the posterior mean of the
parameter CAULOC assumes a very similar value using ei-
ther of the two targets, while the parameter CPRCON results

in a value almost 1.8 times higher using the 500 hPa height

rather than energy norm as a target. However, the 500 hPa
skill optimized model developed a significant bias above
the 500 hPa level, visible for instance as inferior 100 hPa
height skill scores compared with the default model. A score-
card presenting tropical RMSE scores of the two optimized

Geosci. Model Dev., 7, 18884 2014
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scores might only be more efficient for optimization pur-
poses.

The choice of target criterion has to be considered care-
fully prior to the parameter estimation. Tuning of the physical
processes could be done by e.g., focusing on the direct effects
of the parametrizations only; i.e., cloudiness and precipita-
tion in this study. However, this can lead to models where
a (seemingly) good representation is reached at the expense
of other model fields. Hence, a target criterion focusing on
the model forecast skill in more general terms seems more
practical when the goal of the tuning is a univocal model im-
provement. The total energy norm offers a potential target for
parameter optimization since it takes into account the model
changes in all model fields, and focuses on key features of
the model.
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6 Conclusions

norm in improving NWP model forecast skill. EPPERBvi-

P nen et al. 2012 Laine et al, 2012 is utilized to estimate

1000 s % %@ 3N oo four ECHAMS5 model parametrization closure parameters re-
LATITUDE lated to clouds and precipitation. The ensemble runs are gen-

Figure 9. Pressure—latitude cross section of forecast day three zondf'ated using the ECHAMS model to evolve the perturbed ini-
mean energy norm differences (unit J/k§Ra) between default tial states generated by the ECMWF for their ensemble pre-
and optimized models from January to March 2011. Positive val-diction system. Here, model error is represented (and thus
ues indicate where the optimized model is performing better. ensuring sufficient spread of the ensembles) by perturbing
the ECHAMS closure parameters which are being estimated.
The twice-daily 50 member ensembles are generated over a
period of 3 months and each ensemble member is used in the
models is shown in FiglO. A comparison of the models re- sequential parameter distribution update according to their
veals that the version optimized using the energy norm is surespective weights obtained by calculating the dry total en-
perior especially with respect to the winds. One reason forergy norm of the 3-day forecast error against the ECMWF
this result is the ambiguity of 500 hPa skill as a target: theanalyses.
upper troposphere and lower stratosphere circulation is not We first study the impact of initial state and parameter per-
properly constrained and there are many model realizationsurbations on the ensemble spread in terms of energy norm of
(i.e., the same model structure at the 500 hPa level but differthe 3-day forecast error in a sample of 30 forecasts using the
ent closure parameter values) that fulfill the target. default model. On average, the forecast departures from the
Analysis of the model moisture fields implies that apply- analyses are largest at the Northern (winter) Hemisphere’s
ing the moist energy norm (see e.Barkmeijer et al.2001, midlatitudes. In the tropics, the ensemble spread is mostly
for the formula) as the target criterion would further empha-due to parameter variations, whereas at higher latitudes ini-
size the tropics in the estimation process. The contribution otial state perturbations either dominate or are equally impor-
the moisture term to the total EN would be on the same or-tant as parameter perturbations.
der as the temperature term. We speculate that including the The optimization is performed in a 3-month period
term into the cost function would have a small effect on the (January—March 2011), and the optimized model is validated
final parameter distributions. Although, without constructing with respect to the optimization criterion, typical head-line
a weighting function for the moisture part we cannot predictscores, and a comprehensive scorecard. First, the optimized
what the magnitude of the impact would actually be. model is an improvement with respect to the target criterion.
Since the target criterion can be chosen quite freely,Moreover, the improvement is propagated to 3—10-day fore-
changes in specific regions can also be targeted for optimizacasts. Second, head-line scores are improved in dependent
tion with the EPPES algorithm. For instance, in the currentand independent samples. Third, the scorecard shows im-
experimentations with the IFS parameter variations have grovements on a broad range of individual scores, such as
rather small impact on calculated EN scores outside the tropelearly improved tropical winds. The improvements of the
ics. Thus, a cost function constructed from the tropical ENenergy norm are found to stem from better representation

O ) This article explores the use of atmospheric dry total energy
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Figure 10. Comparison of forecast validation score cards for the tropics. Left column: model optimized with dry total energy norm as target
criterion, right column: model optimized with geopotential height mean squared error (MSE) at the 500 hPa level as target criterion. In total,
180 forecast cases between 1 January and 31 March 2011. Forecast performance is color coded as follows: green is good for the optimize
model while red is good for the default model. Small (large) arrowhead indicates the 95 % (99 %) level of statistical significance of the score
difference. The first column indicates the area; second, the variable; third, pressure level; and the fourth and fifth columns the RMSE scores
for forecast days 1-10.
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