

General Relativity and Quantum Cosmology

Jakub Mielczarek, Wlodzimierz Piechocki

arXiv.org > gr-qc > arXiv:1107.4686

cosmology

Search or Article-id

All papers 🚽 Go!

(Help | Advanced search)

Download:

- PDF
- PostScript
- Other formats

Current browse context: gr-qc

< prev | next >

new | recent | 1107

Change to browse by:

astro-ph astro-ph.CO hep-th

References & Citations

- INSPIRE HEP (refers to | cited by)
- NASA ADS

Bookmark(what is this?)

We present the method of describing an evolution in quantum cosmology in the framework of the reduced phase space quantization of loop cosmology.
We apply our method to the flat Friedman-Robertson-Walker model coupled
to a massless scalar field. We identify the physical quantum Hamiltonian that
is positive-definite and generates globally an unitary evolution of considered
quantum system. We examine properties of expectation values of physical
observables in the process of the quantum big bounce transition. The
dispersion of evolved observables are studied for the Gaussian state.
Calculated relative fluctuations enable an examination of the semi-classicality
conditions and possible occurrence of the cosmic forgetfulness. Preliminary
estimations based on the cosmological data suggest that there was no cosmic
amnesia. Presented results are analytical, and numerical computations are
only used for the visualization purposes. Our method may be generalized to

sophisticated cosmological models including the Bianchi type universes.

(Submitted on 23 Jul 2011 (v1), last revised 4 Mar 2012 (this version, v2))

Evolution in bouncing quantum

Comments:	28 pages, 7 figures. Matches version published in Class. Quantum Grav
Subjects:	General Relativity and Quantum Cosmology (gr-qc) ; Cosmology and Extragalactic Astrophysics (astro-ph.CO); High Energy Physics - Theory (hep-th)
Journal reference:	Class. Quantum Grav. 29 (2012) 065022
DOI:	10.1088/0264-9381/29/6/065022
Cite as:	arXiv:1107.4686 [gr-qc]
	(or arXiv:1107.4686v2 [gr-qc] for this version)

Submission history

From: Jakub Mielczarek [view email] [v1] Sat, 23 Jul 2011 12:31:52 GMT (1245kb) [v2] Sun, 4 Mar 2012 12:03:08 GMT (1259kb)

Which authors of this paper are endorsers?