

arXiv.org > astro-ph > arXiv:1107.2785

Astrophysics > High Energy Astrophysical Phenomena

Powerful relativistic jets in spiral galaxies

Luigi Foschini

(Submitted on 14 Jul 2011 (v1), last revised 14 Nov 2011 (this version, v2))

The discovery of high-energy (E>100 MeV) gamma rays from Narrow-Line Seyfert 1 Galaxies (gamma-NLS1s) has confirmed the presence of powerful relativistic jets in this class of active galactic nuclei (AGN). Although the jet emission is similar to that of blazars and radio galaxies, gamma-NLS1s have some striking differences: relatively small masses (10^6-10^8 M_sun), high accretion rates (0.1-1 times the Eddington limit) and are generally hosted by spiral galaxies. It is now possible to study a rather unexplored range of mass and accretion rates of AGN with relativistic jets. Specifically, in this work I present some results obtained by comparing a sample of blazars and gamma-NLS1s with another sample of Galactic binaries with relativistic jets (stellar mass black holes and neutron stars).

Comments:	6 pages, 2 figures. Minor corrections after the referee's report. Contribution for the Proceedings of HEPRO3 (Barcelona, 27 June - 1 July 2011). To be published on the International Journal of Modern Physics Conference Series, edited by J.M. Paredes, M. Rib\'o, F.A. Aharonian and G.E. Romero				
Subjects:	High Energy Astrophysical Phenomena (astro-ph.HE); Galaxy Astrophysics (astro-ph.GA)				
Journal reference:	International Journal of Modern Physics: Conference Series, vol. 8 (2012), p. 172-177				
DOI:	10.1142/S2010194512004564				
Cite as:	arXiv:1107.2785 [astro-ph.HE]				
	(or arXiv:1107.2785v2 [astro-ph.HE] for this version)				

Submission history

From: Luigi Foschini [view email] [v1] Thu, 14 Jul 2011 11:03:01 GMT (19kb) [v2] Mon, 14 Nov 2011 09:31:04 GMT (25kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

We gratefully acknowledge supp the Simons Fo and member ins

Search or Article-id

(<u>Help</u> | <u>Advance</u> All papers -

Download:

- PDF
- PostScript
- Other formats

Current browse cont astro-ph.HE

< prev | next >

new | recent | 1107

Change to browse b

astro-ph astro-ph.GA

References & Citatio

- INSPIRE HEP
- (refers to | cited by)
- NASA ADS

Bookmark(what is this?)								
	104	9.02				00	i	

