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ABSTRACT

We present a detailed analysis of four of the most widely used radio source find-
ing packages in radio astronomy, and a program being developed for the Australian
Square Kilometer Array Pathfinder (ASKAP) telescope. The four packages; SExtrac-
tor, sfind, imsad and Selavy are shown to produce source catalogues with high com-
pleteness and reliability. In this paper we analyse the small fraction (∼ 1%) of cases
in which these packages do not perform well. This small fraction of sources will be of
concern for the next generation of radio surveys which will produce many thousands
of sources on a daily basis, in particular for blind radio transients surveys. From our
analysis we identify the ways in which the underlying source finding algorithms fail.
We demonstrate a new source finding algorithm Aegean, based on the application
of a Laplacian kernel, which can avoid these problems and can produce complete and
reliable source catalogues for the next generation of radio surveys.
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1 INTRODUCTION

Source finding in radio astronomy is the process of finding
and characterising objects in radio images. The properties
of these objects are then extracted from the image to form
a survey catalogue. The aim of large scale radio imaging
surveys is to provide an unbiased census of the radio sky,
and hence the ideal source finder is both complete (finds all
sources present in the image) and reliable (all sources found
and extracted are real).

Most of the standard source finding algorithms that
have been developed over the last few decades are highly
complete and reliable, missing only a small fraction of
sources. These problem cases are generally dealt with in pre
or post-processing, or manually corrected in the source cat-
alogue.

Next generation radio surveys such as the Evolution-
ary Map of the Universe (EMU; Norris et al. 2011) and the
ASKAP Survey for Variables and Slow Transients (VAST;
Chatterjee et al. 2010) planned for the Australian SKA
Pathfinder (ASKAP; Johnston et al. 2008) Telescope will
produce large area, sensitive maps of the sky at high ca-
dence, resulting in many times more data than previous sur-
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veys. Data processing will need to be fully automated, with
limited scope for manual intervention and correction. Hence
the small number of missing or incorrectly identified sources
produced by current source-finders will pose a substantial
problem. In particular, in blind surveys for radio transients,
missed sources and false positives in an epoch will cause the
transient detection algorithms to trigger on false ’events’.
VAST will need to extract thousands of sources from sur-
vey images at a cadence of ∼ 5 seconds. A source finding
algorithm which is 99% complete and reliable at a signal-to-
noise ratio of 5, will be producing ∼ 10, 000 false sources,
and missing ∼ 10, 000 real sources per day. Whilst it is pos-
sible to remove false sources from a catalogue, the missing
real sources are lost forever. The large data rates of tele-
scopes like ASKAP will make it impossible to store each
observation, and thus no reprocessing of the data will be
possible.

The way in which a source finding algorithm fails to
detect a real source is often assumed to be related to noise,
and that it is random. In this paper we test this assump-
tion and show that whilst many sources are missed due to
random noise related effects, there is also a component that
is deterministic and related to the underlying algorithm. By
analysing the source finding algorithms and their modes of
failure we identify ways in which the algorithms could be im-
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proved and use this knowledge to build an algorithm which
can produce catalogues that are more complete and more
reliable than those currently available.

In this paper we discuss the problem of source-finding
for Stokes I continuum radio emission in the context of next
generation radio imaging surveys. We will not deal directly
with the additional complications introduced by spectral
line data, polarization data or extended sources and diffuse
emission. The focus of this paper is on upcoming surveys
for ASKAP, however the results will be equally applicable
to future radio surveys on other SKA pathfinder instru-
ments such as the MWA (Lonsdale et al. 2009) and SKAMP
(Adams et al. 2004), and of course the SKA itself.

In § 2 we outline the main approaches to source-finding
in radio astronomy, and then in § 3 describe four of most
widely used source finding packages. § 3.7 gives some ex-
amples of the way that source finding packages are used
to create catalogues for large surveys and transient studies.
§ 4 describes the test data that was used in the analysis of
the source finding algorithms, and § 5 describes the eval-
uation process. The instances in which the source finding
algorithms fail to find or properly characterise sources are
described in § 6. § 7 describes a new source finding algorithm,
Aegean, which has been designed to overcome many of the
problems suffered by existing source finding packages. We
summarise our conclusion in § 8.

2 SOURCE-FINDING IN RADIO

ASTRONOMY

In a broad sense, source finding in radio images involves find-
ing pixels that contain information about an astronomical
source. Most approaches to source finding in radio astron-
omy follow a similar method: (i) background estimation and
subtraction; (ii) source identification; (iii) source character-
isation; and (iv) cataloguing. In this section we outline the
standard method taken in each of these steps.

In the discussion that follows we consider a source to be
a signal of astronomical importance that can be well mod-
eled by an elliptical Gaussian. By this definition a radio
galaxy with a typical core/jet morphology would be made
up of three sources, one for the jet and each of the lobes. The
grouping of multiple sources into a single object of interest
(like a core/jet radio galaxy) is not in the realm of source
finding or classification as it relies on contextual information
to make such an association.

2.1 Background estimation and subtraction

The first step in source finding is determining which parts of
the image belong to sources and which belong to the back-
ground (eg, Huynh et al. 2011). The most common way in
which this separation is achieved is to set a flux threshold
that divides pixels in to background or source pixels. This
process is referred to as thresholding.

A straightforward case would involve a background that
is dominated by thermal noise, which is without structure
and is constant across the entire image. In such a case a
single threshold value can be chosen that will result in all
sources above that threshold being detected, and some small
number of false detections. A varying background can be

accounted for by calculating the mean and rms noise in lo-
cal sub-regions, which is then used to normalize the image
before applying a uniform threshold in signal-to-noise. The
selection of a threshold limit is often a balance between de-
tecting as many real sources as possible and minimising the
number of false detections. Typically a 5σ threshold limit is
used in a blind survey, with higher or lower limits chosen for
larger or smaller regions of sky.

False detection rate (FDR) analysis (Hopkins et al.
2002) determines the threshold limit that will result in a
number of falsely detected pixels that is lower than some
user defined limit.

In cases where the background has structure, an im-
age filter must be used to remove the background structure
before the source-finding stage. The way in which the back-
ground structure is removed depends on the cause and type
of structure that is present. A common example is diffuse
emission in the galactic plane, with compact sources embed-
ded within. A discussion of background filtering techniques
is beyond the scope of this paper, and in our analysis we
assume the images have been pre-processed and are free of
background structure. For an evaluation of background es-
timation see Huynh et al. (2011).

2.2 Source Identification

Source identification is the process by which pixels that
are above a given threshold are grouped into contiguous
groups called islands. Each island corresponds to one or
more sources of interest. The process of finding sources is
complete at this stage. The format of the catalogue is just a
list of pixels that belong to each of the islands, which is not
of general astronomical utility. Source characterisation is re-
quired to convert these islands of pixels into a more useful
form.

2.3 Source Characterisation

Source characterisation involves measuring the properties of
each source, for example the total flux and angular size.
The best source characterisation method is strongly depen-
dent on the nature of the sources that are to be studied.
Point sources, by definition, have the shape of the point-
spread-function (PSF) of an image, making the PSF shape
important in the characterisation process. Images that are
produced from radio synthesis observations have been de-
convolved and the complicated PSF of the instrument has
been replaced with an appropriately scaled Gaussian. Ob-
servations with sufficient u, v coverage will do not need to
be deconvolved as they have a PSF that is already nearly
a Gaussian. In either case, compact sources will appear as
Gaussian, and so an island of pixels can be characterised by
a set of Gaussian components.

In lower resolution radio surveys such as the
NVSS (45 arcsec2, Condon et al. 1998) and SUMSS (45 ×
45cosec|δ| arcsec2, Mauch et al. 2003), a majority of objects
are unresolved and can be characterised by a single Gaus-
sian. However, in higher resolution surveys such as FIRST
(5 arcsec2, Becker et al. 1995) a significant fraction of the
sources are partially extended or have multiple components,
and so multiple Gaussians are required to represent them.
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Fitting a number of Gaussian components to an island
of pixels is straightforward (Condon 1997), but is highly
sensitive to the choice of initial parameters. Gaussian fitting
can converge to unrealistic or non-optimal parameters due to
the many local minima in the difference function. Effective
multiple Gaussian fitting requires two things: an intelligent
estimate of the starting parameters, and sensible constraints
on these parameters. None of the widely used source-finding
packages have an algorithm for robustly estimating initial
parameters for a multiple Gaussian fit.

Two approaches have been developed which try to ad-
dress the difficulty of obtaining accurate initial parameters
for multiple Gaussian fitting: de-blending, and iterative fit-
ting. A de-blending based approach breaks an island into
multiple sub-islands, each of which is fit with a single compo-
nent. In an iterative fitting approach, the difference between
the image data and the fitted model (the fitting residual) is
evaluated in order to determine weather an extra component
is required. This analysis will repeat until an acceptable fit is
achieved, or a limit on the number of components has been
reached. De-blending and iterative fitting are both suscep-
tible to source fragmentation, whereby a single true source
is erroneously represented by multiple components.

Once each island of pixels has been characterised the
fitting parameters are catalogued.

2.4 Cataloguing

The final stage in source finding is extracting the source
parameters and forming a catalogue of objects in the field.

A catalogue should contain an appropriate listing of ev-
ery parameter that was fit, along with the associated un-
certainties. In addition to the fitted parameters, a source
finding algorithm should report instances where the source
characterisation stage was inadequate or failed. By report-
ing sources that were not well fit, a catalogue can remain
complete despite having measured some source parameters
incorrectly. Poorly fit sources can easily be re-measured,
whereas excluded sources are missed forever. If it is not pos-
sible to construct a reasonable facsimile of the true sky using
only the information provided in the source catalogue then
the source finding process has not been successful.

3 SOURCE-FINDING PACKAGES AND

THEIR ALGORITHMS

Most of the major source-finding packages in astronomy are
based on a few common algorithms. In this section we outline
the features of these packages.

Source finding packages that rely on wavelet analysis
were not considered in this work as none of the most widely
used source finding packages rely on wavelet analysis.

3.1 SExtractor

SExtractor (SE; Bertin & Arnouts 1996) was developed for
use on optical images from scanned plates. The speed and
ease of use of SExtractor has made it a popular choice for
radio astronomy despite its optical astronomy origins. SEx-
tractor is a stand alone package for Unix-like operating sys-
tems.

The source finding and characterisation process that
SExtractor follows can be modified via an extensive param-
eter file. For this work the following parameters were used:

DETECT MINAREA 5
THRESH TYPE ABSOLUTE
DETECT THRESH 125e-6
ANALYSIS THRESH 75e-6

MASK TYPE CORRECT
BACK SIZE 400
BACK FILTERSIZE 3

The first four parameters instruct SExtractor to de-
tect all sources with a peak pixel brighter than 5σ =
125µJy/beam. The source characterisation is then carried
out on islands of pixels that are brighter than 3σ =
75µJy/beam that contain at least 5 pixels. The final three
parameters ensure that the measured flux of a source is cor-
rected for the effects of nearby sources, and that the back-
ground is estimated using a box of 3× 400 pixels on a side.
This large background size results in a background that is
less than 1µJy for each of the tested images. The param-
eters DEBLEND NTHRESH and DEBLEND MINCONT
are used by SE in the source characterisation stage, when
deciding how many components are contained within an is-
land of pixels. The ability of SE to characterize sources was
found to be insensitive to these parameters for the simulated
images used in this work.

3.2 imsad

Image Search and Destroy (imsad) is an image based source
finding algorithm in miriad (Sault et al. 1995). The thresh-
old is user–specified either as an absolute flux level or as a
signal to noise ratio (SNR) with the background noise de-
termined from a histogram of pixel values. Only pixels that
are brighter than the threshold are used in the fitting pro-
cess. For the analysis presented in this work we specify a
threshold of 5σ = 125µJy/beam. imsad performs a single
Gaussian fit to each island of pixels.

3.3 Selavy

Selavy is the source finding package that is being developed
by ASKAPsoft as part of the data processing pipeline for
ASKAP. Selavy is a source finding package that is able
to work with spectral cubes and continuum images, and
includes a number of different algorithms and approaches
to source finding. Selavy is related to the publicly avail-
able Duchamp software (Whiting, 2012, MNRAS, in press1).
Selavy is a version of the Duchamp software that has been in-
tegrated into the ASKAPsoft architecture to run on a highly
parallel system with distributed resources. In the context of
compact continuum source finding the only difference be-
tween Selavy and Duchamp is that Selavy is able to param-
eterize and island of pixels with multiple Gaussian compo-
nents. Selavy was given a threshold of 5σ = 125µJy/beam
for source detection.

1 http://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp
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3.4 sfind

sfind (Hopkins et al. 2002) is implemented in MIRIAD and
uses FDR analysis to set the detection threshold. Source
characterisation is performed using the same Gaussian fit-
ting subroutine as that use by the MIRIAD task imfit.

A varying background is calculated by sfind by dividing
the image into sub-regions of (user defined) size, and mea-
suring the mean and rms of each region. In an image which
contains a high density of sources, or sub-regions which con-
tain a particularly bright or extended source, the calculated
mean and rms will be contaminated by the sources. For sub-
regions where this occurs the result is a mean and rms value
that is significantly different from the adjacent sub-regions,
which can cause sources on the boundaries to be normalised
such that their shape and flux distribution are not preserved.
For an image which is constructed to have a zero mean and
constant rms, these contamination effects can be largely re-
moved by setting the size of the sub-regions to be larger
than the given image.

The rejection of sources which fail to be fit with a Gaus-
sian rejects many instances of sources that have very few
pixels. This has the effect of further decreasing the false de-
tection rate for the catalogue, since a false positive source
needs to have many contiguous false positive pixels in order
to be fit properly.

In this work we selected the sub-regions to be larger
than the given image, and adjusted the FDR parameter
until the automatically selected threshold was at 5σ =
125µJy/beam.

3.5 FloodFill

FloodFill is an algorithm which performs the second stage
of source finding, separating the foreground from the back-
ground pixels, and grouping them into islands that are then
passed on to the source characterisation stage. We describe
FloodFill as implemented in the new source finding algo-
rithm, Aegean, which is described in §7. Although used by
Murphy et al. (2007), the details of the algorithm have not
been described in the astronomical literature (although see
Roerdink & Meijster 2001).

FloodFill takes an image and two thresholds (σs and
σf , with σs > σf ). Pixels that are above the seed threshold
σs are used to seed an island, whilst pixels that are above
the flood threshold σf are used to grow an island. Given a
single pixel above σs, FloodFill considers all the adjacent
pixels. Adjacent pixels that are above σf are added to the
island and pixels adjacent to these are then considered. This
iterative process is continued until all adjacent pixels have
been considered. The operation of FloodFill is demonstrated
on a simplistic ‘image’ in Figure 1. In panel A the brightest
pixel in the image has been chosen to seed the island, and
is coloured yellow. The adjacent pixels are coloured cyan. In
panel B the pixels that are adjacent to the seeding pixel are
added to the island as they are brighter than σf = 4. Pixels
adjacent to the island are now considered. The process is
repeated in panel C. In panel D some of the adjacent pixels
are now below σf and are thus not added to the island,
and are flagged as background pixels. In panel E there are
no longer any pixels adjacent to the island which have not
been rejected so the search for new pixels halts. In panel

4 6 7 6 4 2 4 6 7 6 4 2 4 6 7 6 4 2

5 7 8 7 5 3 5 7 8 7 5 3 5 7 8 7 5 3

4 6 7 6 4 3 4 6 7 6 4 3 4 6 7 6 4 3

3 4 5 4 3 2 3 4 5 4 3 2 3 4 5 4 3 2

2 2 3 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2

1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2

4 6 7 6 4 2 4 6 7 6 4 2 4 6 7 6 4 2

5 7 8 7 5 3 5 7 8 7 5 3 5 7 8 7 5 3

4 6 7 6 4 3 4 6 7 6 4 3 4 6 7 6 4 3

3 4 5 4 3 2 3 4 5 4 3 2 3 4 5 4 3 2

2 2 3 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2

1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2

Unprocessed pixels Pixels in the island

Pixels being considered Background pixels

A B C

D E F

Figure 1. A demonstration of the operation of the FloodFill
algorithm. The small ‘image’ has pixel values that are in units
of the background noise. The seed threshold is σs = 5 and the
flood threshold σf = 4. The orange pixels are those that have
been assigned to an island, green pixels are those that are being
considered, gray pixels have been rejected and white pixels are
yet to be considered. In panel A the brightest pixels is used to
seed an island. Pixels adjacent to the island are then inspected
(coloured green). In panel B the pixels under consideration are
brighter than the flooding threshold and are added to the island.
The process is repeated in panels C and D. In panel E there are no
more pixels adjacent to the island that have not been inspected. If
panel F all pixels have either been assigned to an island (orange)
or are labeled as background (gray).

E there are no longer any pixels above the seeding limit of
σs = 5 so all remaining pixels are flagged as background
pixels (panel F).

The operation of FloodFill is invariant to changes in
the order in which the seed pixels are chosen. The output of
FloodFill is a disjoint list of islands, each of which contains
contiguous pixels that are above the σf limit. FloodFill does
not perform any source characterisation, although it is able
to report the flux of an island of pixels by summing the pixel
intensities. The fluxes that are reported by FloodFill have a
positive bias which can be corrected as described by Hales
et al. (2011, in prep).

3.6 Aegean

FloodFill forms the basis for two new source finding al-
gorithms: BLOBCAT (Hales et al. 2011, in prep) and
Aegean. Both algorithms begin with a set of islands iden-
tified by FloodFill but characterise these islands differently.
The BLOBCAT program characterises each island of pix-
els without assuming a particular source structure, where
as Aegean assumes a compact source structure in order to
fit multiple components to each island. Here we outline the
Aegean algorithm, with a detailed description differed to
§ 7.

The Aegean algorithm has been implemented in
Python and uses FloodFill to create a list of islands of pix-
els. Aegean was set to use a single background threshold of
5σ to seed the islands, and a flood threshold of 4σ to grow
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the islands. This threshold was set to 5σ = 125µJy/beam so
that we are detecting sources above an SNR of 5.

Aegean uses a curvature map to decide how many
Gaussian components should be fit to each island of pixels,
and the initial parameters for each component. A Python
implementation of the MPFit library2 is used to fit the Gaus-
sian components with appropriate constraints. Each island
of pixels is thus characterised by at least one Gaussian com-
ponent.

3.7 Source finding in radio surveys

The process of creating a catalogue of sources from survey
images involves more than running one of the source find-
ing packages described in § 3. Since the observing strategy,
hardware and data reduction techniques can vary widely
between surveys, standard source finding packages are typi-
cally used only as a starting point for the creation of a source
catalogue. The time required to carry out the observations
for a large area sky survey is typically spread over multiple
years. This prolonged observing schedule is usually accom-
panied by multiple iterations of calibration, data reduction
and source detection, so that by the time the final observa-
tions are complete it is possible to produce a survey cata-
logue using a source finding pipeline that has been refined
over many years.

The NRAO Very Large Array (VLA) Sky Survey
(NVSS, Condon et al. 1998), drew upon observations from
1993-1996, during which time the AIPS source finding rou-
tine SAD was modified to create VSAD. The survey strategy
for the NVSS was devised to give noise and sidelobe charac-
teristics that were both low, and consistent across the sky.
The configuration of the VLA was varied across the sky to
ensure a consistent resolution throughout the survey. The
survey strategy was thus designed to produce images that
were nearly uniform across the sky, making the task of source
finding as easy as possible. The completeness and reliability
of the NVSS catalogue was improved in the years subsequent
to the completion of the survey with the final stable release
in 2002.

The Sydney University Molonglo Sky Survey (SUMSS,
Mauch et al. 2003) and Molonglo Galactic Plane Survey
(MGPS-2, Murphy et al. 2007) both used the source finding
package VSAD, however the single purely East–West con-
figuration of the telescope meant that the resolution var-
ied with declination, and the regularly spaced feeds pro-
duced many image artefacts. The changing resolution and
image artefacts meant that the source finding algorithm pro-
duced many false detections. The image artefacts appeared
as radial spokes or arcs around bright sources. In order
to rid the source catalogue of falsely detected sources, a
machine learning algorithm was implemented (Mauch et al.
2003; Murphy et al. 2007). The machine learning algorithm
was able to discriminate between real and false sources, but
required substantial training to achieve high completeness
and reliability.

An archival transients survey has recently been
completed using the data from the SUMSS survey

2 code.google.com/p/agpy/source/browse/trunk/mpfit/mpfit.py
revision 235

(Bannister et al. 2011). In an archival search spanning 20
years of observations, the need for a fast source detection
pipeline is not important, as fast transients will not be de-
tected, and slow transients will remain visible for years to
come. In the Bannister et al. (2011) survey, regions of sky
with multiple observations were extracted from the archival
SUMSS data. These regions of sky were analysed for sources
which either changed significantly in flux, or which were de-
tected in only a subset of the images. The sfind package
was used to detect sources, which were then remeasured
using the miriad routine imfit. A complication that was
encountered in the analysis of the SUMSS data, was the
contamination of candidate source lists due to source find-
ing errors. False positive detections and missed real sources
both appear as sources which are only detected in a subset
of all the images, and thus appear to be transient sources.
The light curve of each transient event therefore needed to
be double checked in order to remove such occurrences.

A similar transient detection project was carried out
with new observations from the Allen Telescope Array, in
the ATA Transients Survey (ATATS, Croft et al. 2011).
Side–lobe contamination in the ATA images is much lower
than that in the SUMSS images used in the Bannister et al.
(2011) study, however falsely detected sources in the indi-
vidual images still resulted in false transient detections and
required further processing to remove.

The process of finding sources and creating a catalogue
extends beyond the operation of a source finding package
and has previously required substantial manual intervention.
The next generation of telescopes, particularly the dedicated
survey instruments, will be able to complete observations
on a much shorter time scale than current generation tele-
scopes, and thus the time spent creating the refining the
source catalogue will become a larger fraction of the total
effective survey time. Source finding packages that are able
to produce more accurate, complete and reliable catalogues
will provide a better starting point for the final version of
the survey catalogue.

4 TEST DATA

We used a simulated data set to evaluate the source-finding
algorithms described in § 3. A simulated data set has the
advantage that we are able to control the image properties
(such as rms noise) and that we know the input catalogue.

Matching recovered sources with a true list of expected
sources is an important part of the analysis presented in this
paper. With any real data set, the list of expected sources
comes with some degree of uncertainty, in that these lists
are recovered from incomplete and noisy reconstructions of
the radio sky. To avoid such uncertainties we generated a
master catalogue of sources, which was then used to create
a simulated image of the sky. With absolute control over
the input catalogue and image characteristics, we are able
to make more definitive statements about the quality of the
catalogues that are produced.

The master source catalogue was generated with the
following constraints:

(i) Fluxes: The source peak flux are distributed as
N(S) ∝ S−2.3, and within the range (25 µJy, 10 Jy).
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(ii) Positions: Sources were randomly distributed in space
within one of ten regions of sky similar to that in Figure 2.
Source clustering was not considered.

(iii) Morphologies: The major and minor axes of each
source were randomly distributed in the range 0− 52′′ with
position angles in the range (−90 deg,+90 deg).

A simulated sky image was created, which contained
each of the sources in the input catalogue. The image has
a 30′′ sythesised beam, and a 25µJy/beam rms Gaussian
background noise. The sources were injected with a peak
flux and morphology as listed in the catalogue. The size of
the image is 4801x4801 pixels with a scale of 6′′ per pixel,
resulting in a synthesised beam sampling of 5 pixels per
beam. Regions of sky exterior to the catalogue contain noise
but no sources.

The simulated data-set can be found online at
www.physics.usyd.edu.au/~hancock/simulations

5 SOURCE-FINDING EVALUATION

The source finding packages described in § 3 were used to
generate a catalogue of sources from the simulated images.
Each source finding package was run with a 5σ threshold. In
the case of sfind, the FDR was chosen so that the resulting
threshold was equal to 5σ.

The source finding algorithms were evaluated by com-
paring these catalogues with the input source catalogue.
Three standard metrics that have been used in the compar-
ison of catalogues, and hence source finders, are the com-
pleteness, reliability, and flux distribution, as defined and
discussed in 5.2 - 5.5 below.

5.1 Cross matching of catalogues

Much of the analysis that will be discussed in § 5.2-5.5 relies
on the cross–identification of sources from two catalogues.
A common criterion for accepting cross–identifications be-
tween catalogues is to choose the association with the small-
est sky separation, up to a maximum matching radius.
To decrease the chances of false associations we also con-
sider the flux of the source when choosing between multiple
matches within a matching radius of 30′′. The distance in
phase space, D, is given by:

− log(D) =
(α1 − α2)

2

σ2
α

+
(δ1 − δ2)

2

σ2
δ

+
(S1 − S2)

2

σ2
S

(1)

where (α, δ) are (RA,DEC), S is the flux, and σα = σδ = 30′′

is the size of the convolving beam, and σS = 25µJy/beam
is the image rms noise.

5.2 Flux Distribution

The analysis of the flux distribution of a catalogue does
not require catalogues to be cross-matched. Since the in-
put source catalogue was constructed with a particular flux
distribution, we should expect to see this distribution repli-
cated in the output catalogues. Figure 3 shows the flux dis-
tribution for each of the source finders compared to the input
distribution. Except for Selavy, each of the catalogues have a
flux distribution that is consistent with the input catalogue.
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Figure 3. The source count distribution of the catalogued
sources. The true source count distribution is shown as a dotted
line. Selavy consistently reports twice the true number of sources.

An excess of sources can be a sign of spurious detections,
whilst a lack of sources can be due to incompleteness. If a
source finding algorithm has a flux distribution that devi-
ates from the ideal case, it indicates that something is wrong
however the cause of the problem cannot be identified from
this graph alone. Selavy has around double the number of
sources at all flux levels as it suffers from source fragmen-
tation. Since the fragmented components are close to the
true position of the original source, the completeness and
reliability of Selavy are only partly compromised.

5.3 Completeness

The completeness of a catalogue at a flux S0 is often defined
as the fraction of real sources with true flux S > S0 that are
contained within the catalogue. In practice the completeness
is measured as the number of sources with a measured flux
S > S0 that are contained within the catalogue. The two
measures are comparable at large SNR, but when the SNR
is ∼ 5 the flux of a source can be in error by ∼ 20%. The
completeness relative to the measured source fluxes is also
effected by Eddington (1913) bias, whereas the completeness
relative to the true source fluxes is not.

The completeness of a source finder was determined by
matching the simulated catalogue with each of the source
finding catalogues. The completeness of a catalogue at a flux
S0 is then the fraction of real sources of flux greater than
S0 which are contained within the given catalogue. Figure 4
shows completeness as a function of injected SNR for each
of the source finders. Plotted alongside each of the com-
pleteness curves is a theoretical expectation of completeness
for comparison. The expected completeness has been deter-
mined by taking each of the sources in the input catalogue
and calculating the probability that it will be seen at a par-
ticular flux level, given the known rms in the image. The
expected completeness is calculated as
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Figure 2. Simulated image of the sky. The black line delineates the region of sky containing the injected sources. The colour bar ranges
from −5σ to 33σ.

C(S0) =

∑

S P (S > S0)
∑

S>S0
N(S)

(2)

P (S > S0) =
1

σ

√

4 log 2

π

∫ ∞

S0

e
−4 log 2

(

S
′
−S

σ

)

2

dS′ (3)

=
1

2
Erfc

(√
4 log 2(S0 − S)

σ

)

where P (S > S0) is the probability that a source of
flux S will be seen at a flux greater than S0 after noise has
been included, and N(S)dS is the number of sources with

flux between S and S+dS. Erfc is the complementary error
function. At SNR > 6 all of the source finding packages pro-
duce catalogues that are greater than 99% complete. The
high completeness is due to, and responsible for, the wide–
spread use of the given source finders. The different levels
of completeness shown in Figure 4 is a direct result of the
source finding algorithms implemented by each of the pack-
ages. The performance of sfind is comparable to the other
source finders above an SNR of 7, but less complete below
this SNR. The lower completeness is a result of sfind ’s fo-
cus on minimising the false detection rate, as is shown in
Figure 5. Selavy and Aegean are the most complete source
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Figure 4. The completeness of each catalogue as compared to the
input catalogue. The coloured curves represent the completeness
of the named source finders. The black dotted curve represents
the expected completeness of an ideal source finder as calculated
by Equations 2-3.

finding packages at all SNRs, however Selavy achieves this at
a cost of an increased false detection rate (see § 5.4 and Fig-
ure 4). Aegean is able to achieve high completeness and low
false detection rate at all SNRs. The completeness of each
of the source finding packages is summarised in Table 1.

5.4 False Detection Rate

The false detection rate (FDR) of a source finding package
at a flux S0, is defined as the fraction of catalogued sources
with S > S0 which are not identified with a real source. The
FDR of a source finder was determined by matching the re-
sulting catalogue with the simulated source list. Catalogued
sources which are not within 30′′ of a true sources are con-
sidered false detections. The false detection rate of a source
finding algorithm is related to the commonly used metric of
reliability by:

FDR+ Reliability = 100% (4)

In Figure 5 the FDR is plotted as a function of SNR for
each of the source finding packages. Substituting a flux of
S = 0uJy into equation 3 and considering the area of sky
covered by the simulated images we expect that there is less
than one false detection due to random chance. Thus an
ideal source finding algorithm should have an FDR of zero.
The > 1% FDR peaks shown in Figure 5 (especially for
imsad) are due to islands of multiple sources that have not
been properly characterised. SExtractor, imsad and Selavy
have a higher false detection rate than sfind and Aegean,
as the former are not able to accurately characterise islands
of pixels.

The single sources that are fragmented into multiple
sources by Selavy often have positions that are close enough
to the true position that they are not considered false detec-
tions, and thus don’t significantly impact the false detection
rate. However at low SNRs, Selavy breaks single sources into
three or even four components, and one or more of these

10 100 1,000
Input SNR

0 

1 

2 

3 

4 

%

False detection rate

SE

sfind

Selavy
imsad

Aegean

Figure 5. The false detection rate (FDR) for each of the source
finding algorithms. The FDR is entirely a function of the source
finding algorithm. No falsely detected sources are expected above
an SNR of 5 for the area of sky simulated.

Package Completeness (%) Reliability (%)
5σ 10σ 50σ 5σ 10σ 50σ

imsad 93.44 99.50 99.49 97.17 97.75 99.66
Selavy 91.20 99.92 99.87 96.96 97.65 99.93
SE 88.31 99.77 99.62 98.68 99.11 100.0
sfind 82.48 99.81 99.75 96.09 99.79 100.0

Aegean 93.87 99.91 99.87 98.69 100.0 100.0
Ideal 94.51 100.0 100.0 100.0 100.0 100.0

Table 1. The completeness and reliability of each of the source
finding algorithms. The ’Ideal’ case has been included for com-
parison.

components have a position distant enough from the true
source that they are registered as false detections. This is
evident in Figure 5.

imsad suffers from the reverse problem to Selavy, in
that it will never break islands into multiple components
even when they contain multiple sources. The position that
is reported by imsad in such situations can be sufficiently
far from the true position that these islands are registered as
false detections. All of the false detections for imsad above
an SNR of 20 in Figure 5 are due to this flaw.

The reliability of each of the source finding packages is
summarised in Table 1.

5.5 Measured parameter correctness

For all measured catalogue sources that were identified with
a true source it is possible to compare the measured param-
eters to the known true values.

Figure 6 shows the median absolute deviation (MAD) in
position, as a function of SNR, for each of the source find-
ing algorithms. The MAD is calculated for each SNR bin
and is not a cumulative measure. An ideal source finding
algorithm will have a typical error in position that is pro-
portional to C/SNR2 where C is a constant that depends
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Figure 6. The accuracy with which each of the source finding
packages determines the position of sources. The dotted gray
curve is the expected accuracy for an ideal elliptical Gaussian
fit.

on the morphology of the source and the convolving beam
(see Condon (1997) for detailed a calculation). The MAD
in position of an ideal source finding algorithm is calculated
semi-analytically by assuming that each source in the input
catalog has measurement error of C/SNR2. This ideal curve
is plotted in Figure 6.

As is expected, the accuracy with which a source posi-
tion can be measured increases with flux, and is in agreement
with the performance of an ideal Gaussian fitting routine,
which is shown as a dotted curve in Figure 6. The devia-
tions from ideal behaviour that can be seen in Figure 6 for
the various source finders at high SNR are artifacts of the
reporting accuracy of the packages. For example, imsad re-
ports positions to a resolution of 0.1′′ and therefore cannot
achieve a median absolute deviation in position better than
∼ 0.1′′. sfind has similar problems at an SNR of & 3000.
The median absolute position deviation for Aegean and
Selavy will also deviate from ideal, but at an SNR in excess
of the 40, 000 reported in Figure 6. SExtractor does not use
Gaussian fitting to characterise source positions and there-
fore does not perform as well as the ideal at SNR greater
than 50. At an SNR of < 100 Selavy has a median abso-
lute position deviation that is higher than the ideal. This is
because of source fragmentation.

Figure 7 shows the MAD in flux as a fraction of total
flux, as a function of SNR. Again the ideal behavior of a
Gaussian fitter has been shown by a dashed curve. Overall
the source finding packages report fluxes that are consistent
with the expected ideal Gaussian fit, the exceptions being
SExtractor above an SNR of 50, and Selavy at an SNR below
50. SExtractor deviates from the ideal and has a plateau at
1% flux accuracy. In this work we use the corrected isophotal
fluxes (FLUX ISOCOR) from SExtractor. Of all the meth-
ods that are available for measuring fluxes in radio synthesis
images, the corrected isophotal fluxes was found to be the
most accurate. Selavy deviates from the ideal case and has
a flux accuracy of about 1/2 of ideal. The cause of this devi-
ation is source fragmentation in which each component has
only a fraction of the total true flux (see § 5.2 and Figure 3).

10 100 1,000 10,000
Measured SNR
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1

10

100

%

Median absolute flux deviation
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sfind

Selavy

imsad

Aegean

Figure 7. The accuracy with which each of the source finding
packages measures the flux of sources as a function of the reported
flux. The dotted gray line is the expected accuracy for an ideal
elliptical Gaussian fit.

5.6 Initial evaluation summary

Each of the source finding algorithms conforms to a high
standard of completeness and reliability, and is able to pro-
duce a robust catalogue of a statistically large number of
sources, with accurate measurements of position and flux.
The completeness of the Aegean source finding package is
as good or better than any of the other packages, and has
been achieved without sacrificing reliability. In the context
of next generation radio surveys, we are interested in the
small differences between each of these source finders, and
in how to optimize the approach to avoid even the residual
small level of incompleteness and false detection rate. In sur-
veys such as EMU (Norris et al. 2011), with an expected 70
million sources, an FDR of even 1% translates into 700, 000
false sources. This clearly has an impact on the study of
rare or unusual behaviour. In particular we are interested
in how the source finding algorithm affects the final output
catalogue at a level that is far more detailed than previously
explored. With this in mind we now delve into specific cases
in which existing source finding packages fail.

6 MISSED SOURCES

We are now at the stage where we can consider the real
sources that were missed by the source finding packages, as
well as the false detections that these programs generate.
There are two populations of sources that are missed by one
or more of the source finding packages as will be discussed
in § 6.1-6.2 below.

6.1 Isolated faint sources

In the simulated image, for which no clustering was taken
into account, 99.5% of the islands contained a single source.

The first population of sources that was not well de-
tected by the source finding algorithms are isolated faint
sources. These sources have a true flux greater than the
threshold, but have few or no pixels above the threshold



10 Hancock et al.

due to the addition of noise. sfind and SExtractor require
an island to have more than some minimum number of pixels
for it to be considered a candidate source. imsad, Selavy and
Aegean have no such requirement. The number of sources
that are not seen in a catalogue due to the effects of noise can
be calculated directly and is essentially the inverse problem
to that of false detections. A correction can be applied to any
statistical measure extracted from the catalogue in order to
account for these missed sources. The only way to recover
all sources with a true flux above a given limit, is to have
a threshold that is well below this limit, either by produc-
ing a more sensitive image, or by accepting a larger number
of false detections. Since this noise affected population of
sources cannot be reduced by an improved source finding
algorithm, and can be accounted for in a statistically robust
way, we will consider this population to be non-problematic.

6.2 Islands with multiple sources

The second population of sources that is not well detected by
the source finding packages are the sources that are within
an island of pixels that contains multiple components. Ex-
amples of such islands are shown in Figures 8, 9, and 10.
If a source finding algorithm is unable to correctly charac-
terise multiple sources within an island, some or all of these
sources will be missed. There are two approaches used by
the tested algorithms to extract multiple sources from an
island of pixels - iterative fitting and de–blending. Each of
these approaches can fail to characterise an island of sources
for different reasons, and will now be discussed in detail.

6.2.1 Iterative fitting

The first approach to characterising an island of multiple
components is an iterative one which relies on the notion of
a fitting residual. The fitting residual is the difference be-
tween the data and the model fit. In the iterative approach
a single Gaussian is fit to the island and the fitting residual
is inspected. If the fitting residual meets some criterion then
the fit is considered to be ‘good’ and a single source is re-
ported. If the residual is ‘poor’ then the fit is redone with an
extra component. Once either the fitting residual is found
to be ‘good’ or some maximum number of components has
been fit, the iteration stops and the extracted sources are re-
ported. A disadvantage of this method is that if the number
of allowed Gaussians (n) is poorly chosen, islands contain-
ing single faint sources can have a ‘better’ fitting residual
when fit by multiple components, and source fragmentation
occurs. When a source is fragmented it is difficult to extract
the overall source parameters from the multiple Gaussians
that were used in the fitting of the source. In particular the
source flux is not simply the sum of the flux of the frag-
ments. If the chosen value of n is too small then not all
of the sources within an island will be characterised. These
uncharacterised sources will contaminate the fitting of the
previously identified sources resulting in a poor characteri-
sation of the island.

When the flux ratio of components within an island of
pixels becomes very large, an iterative fitting approach can
fail. The cause of this failure is related to the performance
of an ideal Gaussian fitting routine. Figure 7 shows the frac-
tional error in measuring the amplitude of a Gaussian. For

Image sfind

SE Selavy

imsad Aegean

Figure 8. Top Left: A section of the simulated image. Remain-
der: The fitting residual for each of the source finding algorithms.
Aegean was the only algorithm to fit all three sources, over both
islands.

high SNR sources, the absolute flux error can be orders of
magnitude below the rms image noise, so it may be expected
that the maximum flux in the fitting residual should also be
at or below the rms image noise. However the main contri-
bution to the flux seen in the fitting residual is not from
amplitude errors but from errors in estimating the FWHM
of the source.

The amplitude difference between a (1D) Gaussian of
amplitude A and FHWM of θ (= 2

√
2 log 2σ) and a second

Gaussian of identical amplitude A and FWHM of θ′ = θ +
∆θ, is given by F (x):

F (x) = A

(

e
− x

2
4 ln 2

θ2 − e
−x

2
4 ln 2

θ′2

)

, (5)

which has maxima at

x2
0 =

ln θ
θ′

2 ln 2

(

θ′
2
θ2

θ′2 − θ2

)

. (6)

As a fraction of the true flux, the maximum residual is then

F (x0)

A
=

(

2∆θ

θ

)

×
(

1 +
2∆θ

θ

) θ

2∆θ

(7)

The typical error in the measurement of θ is (Condon 1997)

∆θ

θ
=

µ(θ)

θ
≃ σ

A
, (8)
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Image sfind

SE Selavy

imsad Aegean

Figure 9. Top Left: A section of the simulated image. Remain-
der: The fitting residual for each of the source finding algorithms.
Aegean and sfind were able to correctly identify and characterise
the two components but others were not.

Figure 10. Left: An island of pixels from the simulated image
containing both a 9Jy source and a 1.7mJy source. Right: The
fitting residual formed by subtracting a (Aegean) fitted model of
the 9Jy source from the data. The pixel scale is −3σ (white) to
+5σ (black) with contours at an SNR of ±5,±50,±500,±5000 in
contrasting tones. The flux of the source and its major axis have
both been measured to within 0.05% of the true value and yet
the fitting residual has peaks at an SNR of over 500.

so that a source with an SNR of A/σ will have a fitting
residual with an SNR of

F (x0)

σ
= 2

(

1 +
2σ

A

) A

2σ

. (9)

From the Equation 9 it is clear that in an island whose
brightest source has an SNR of A/σ, sources below an

SNR of F (x0)/σ will not be detected by an iterative fitting
method. The fitting residual exceeds 5σ at an SNR as low
as 11. Therefore, even an ideal Gaussian fitting routine will
miss 5σ sources that are within the same island as a source
of > 11σ if an iterative approach is taken. If two Gaussian
components are fit to an island of pixels such as that shown
in Figure 10, and the positions are left unconstrained, the
fainter component will migrate towards one of the maxima
in the fitting residual. The brighter source will then be char-
acterised by two Gaussians, and the fainter source by none.
The final result, is that neither of the sources will be well
characterised. It is therefore essential that a source finding
algorithm has some method for determining the number of
Gaussian components within an island, as well as a way
to stop the fitting process from mis-characterising the two
sources. A process called sectioning or de-blending is a com-
mon method.

6.2.2 Sectioning or de-blending

A second approach to characterising islands with multiple
sources is to use the distribution of flux within the island
to determine the number of components to be fit, and then
fit the components. This approach relies on some a priori

knowledge of what a source looks like to break an island
into components. sfind, SE, and Aegean all use a form of
sectioning to generate an initial estimate of the number of
sources to be fit, as well as the starting parameters.

It is possible to create a statistical measure that will
account for the number of sources that are missed because
there are multiple sources within an island of pixels. This
would, however, require detailed knowledge of the source
finding algorithm, the flux distribution of the source pop-
ulation, and the flux dependent two-point correlation func-
tion. The complexity of this calculation means that it is
never computed and sometimes not even considered. Since
many variable phenomena appear in or near known sources
(eg., radio supernovae in galaxies, extreme scattering events
within our own Galaxy, and more), an inability to accurately
characterise this population of sources will make it difficult
or impossible to reliably detect and characterise many vari-
able events.

7 THE NEW SOURCE FINDING PROGRAM:

Aegean

With an understanding of how the underlying algorithms
affect a source finder’s ability to find and accurately charac-
terise islands of pixels, we have created a new source finding
algorithm. The goal of the new algorithm is to incorporate
the reliability and completeness performance of the pack-
ages studied in § 3-6, whilst improving on their ability to
characterise islands of pixels. The source finding algorithm
is called Aegean, as it deals with many islands.

As background estimation and subtraction are not part
of the focus of this work, Aegean has been designed with
only a simple background estimation algorithm. For the
analysis presented,Aegeanwas run with a detection thresh-
old of 125µJy/beam. Aegean uses the FloodFill algorithm
described in § 3.5 to create islands of pixels.

Aegean makes use of the notion of a single curvature
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map to characterise an island of pixels. The curvature κ of
a function f(x) is given by:

κ =
f ′′

(1 + f ′2)3/2
(10)

(Reilly 1982). For a Gaussian with a FHWM of k pixels,

f ′(x) =
−16x ln 2

k2
e
− x

2
8 ln 2

k2 , (11)

so that f ′2 has a maxima at x = k/
√
2, and

f ′2
6

1

k2

(ln 2)2

29
. (12)

For a Gaussian with k > 1, f ′2 ≪ 1 and we can approximate

κ ≃ f ′′. (13)

The curvature of a surface in a particular direction can be
defined using Equation 13, where the differentiation is along
a unit vector in the chosen direction. Molinari et al. (2011)
calculate the curvature of their input image in four image
directions in order assist their source finding and charac-
terisation. We combine these four curvature measurements
to calculate the mean curvature of an image. For an image
convolved with a Gaussian with a FWHM of k pixels, the
(mean) curvature, κ̄ is equal to the mean of κ calculated
in any two orthogonal directions (Reilly 1982). The discrete
2D Laplacian kernel

L2
xy =





1 1 1
1 −8 1
1 1 1



 , (14)

calculates the sum of the second derivatives in four direc-
tions. Convolving the input image with L2

xy will therefore
produce a map of 2κ̄ - a single curvature map.

Islands of pixels are fit with multiple Gaussian compo-
nents. The number of components to be fit is determined
from a curvature map. The curvature map will be nega-
tive around local maxima. Groups of contiguous pixels that
have negative curvature and fluxes above the threshold are
called summits. An island of pixels will contain one or more
summits. Aegean fits one component per summit, with the
parameters of each of the components are taken from the
corresponding summit. The position and flux are initially set
to be equal to the brightest pixel within a summit, and the
shape parameters (major/minor axis and position angle) are
set to be the same as the convolving beam. Figure 12 shows
an example of two islands that contain multiple sources with
the island boundaries and regions of negative curvature de-
limited. In the example in the left panel of Figure 12 there
are three regions of negative curvature that are completely
within the green island. This island is fit with three Gaus-
sians. In the example in the right panel of Figure 12 there
are two regions of negative curvature that overlap with the
island of pixels. One component is contained entirely within
the island, whilst the other is only partly within the island.
Only the region of negative curvature that is within the
green island is considered when estimating the initial pa-
rameters of the components. Both of the islands depicted
in Figure 12 contains a source that is bright enough that
the expected fitting residual would be brighter than any of
the other components within the island, and therefore an
iterative fitting approach would only fit a single component
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Figure 11. A demonstration of the operation of Aegean, using
a single multiple component island as example. The input image
is used to create a curvature map from which the curvature noise
σcurve is calculated. FloodFill is used to break the image into
islands of pixels. The number of components in an island is esti-
mated using a combination of the curvature mask and threshold
mask. An elliptical Gaussian is fit to each of the components in
the island simultaneously.

(see § 6.2.1). Since the island of pixels in the right panel of
Figure 12 has two summits, Aegean is able to accurately
detect and characterise both components. Islands of pixels
that contain only a single source have only a single summit
and are fit with a single component.

To avoid faint components migrating to the fitting resid-
ual of brighter components, the position of each of the com-
ponents is constrained to be within the corresponding sum-
mit. The flux of each component must be greater than 5σ.
For low SNR sources, the true flux can be significantly differ-
ent from the intensity of the brightest pixel in the summit,
Smax. For high SNR sources such noise variations are less
important and beam sampling effects become more impor-
tant.

For an image with a sampling rate of k pixels per beam
a source of flux S which is located at the intersection of
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Figure 12. Two examples of the curvature analysis scheme. The
greyscale represents the flux density map and ranges from −3σ
(white) to +10σ (black). The green contour is at 5σ and represents
the island boundary. The red contours are where the curvature
map changes from positive to negative. Regions surrounded by a
red contour have negative curvature and are the local maxima.

four pixels will effectively be sampled
√
2 ∗ θ/2k pixels from

the centre of the source. The intensity of the peak pixel is
therefore given by:

Smax = S · exp






−

(√
2θ

2k

)2

∗ 4 ln 2
θ2






(15)

= S · 2−
2

k2 , (16)

where θ is the FWHM of the source. The flux of each compo-

nent is therefore constrained to be less than Smax ·2
2

k2 +3σ.
A Gaussian function has negative curvature from the

peak out to ±FWHM/
√
2. The size of a summit is there-

fore used to constrain the component size. The major and
minor axes of a component must be larger than the syn-
thesised beam, and must remain smaller than

√
2 times the

width of the summit. Beam sampling effects again play a
role here, and so in Aegean, we increase the limits on the
major and minor axes each by two pixels to account for this.
If the summit is smaller than the synthesised beam then the
component is fit with the PSF.

The performance of Aegean has been presented in § 5-6
along with the other source finding algorithms under study.

8 CONCLUSIONS

Using a simulated data set, we have assessed the perfor-
mance of some widely used source finding packages, along
with the ASKAPsoft source finding program Selavy. These
source finding packages are found to produce complete and
reliable catalogues of isolated compact sources. We iden-
tify two populations of sources that are not well detected
by the source finding packages. The first population being
faint sources close to the detection limit, and the second be-
ing sources which are within an island of pixels containing
multiple components. Islands of pixels with multiple compo-
nents are found to be poorly characterised by source finding
packages that take an iterative fitting approach to character-
isation. Source finding packages that estimate the number
of components in an island prior to fitting are less likely to
mis-characterise the island. We have developed a new source
finding package, Aegean, which is able to characterise the
number of components within an island of pixels more ac-
curately than any of the other packages tested.

Aegean makes use of a curvature image which is de-
rived from the input image with a Laplacian transform. Us-
ing the curvature image Aegean is able to accurately deter-
mine the number of compact components within an island
of pixels and produce a set of initial parameters and limits
for a constrained fit of multiple elliptical Gaussians.

Aegean has been shown to produce catalogues with a
5σ completeness that is better than our estimation of an
ideal source finder. This completeness has been achieved
without sacrificing reliability, and Aegean is the most reli-
able of the tested algorithms. The next generation of radio
surveys will be sensitive enough that ∼ 5% of the islands in
the image will contain multiple components and therefore
the ability to characterise such islands is of critical impor-
tance. Aegean is able to accurately characterise islands of
pixels which contain multiple compact components.

We have shown that in order to improve the reliabil-
ity and completeness of source catalogues it is necessary to
perform constrained multiple Gaussian fitting. An accurate
estimation of initial parameters and sensible constraints are
both critical when multiple component Gaussian fitting is
performed. We have demonstrated a method for estimating
and constraining the fitting parameters which is based on
the curvature of the image. We anticipate that by adopting
the Aegean algorithm, the next generation of radio contin-
uum surveys will be able to achieve more complete, reliable
and accurate catalogues without relying on significant man-
ual intervention.
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