

arXiv.org > nlin > arXiv:1107.5771

Hussein Aluie, Shengtai Li, Hui Li

Nonlinear Sciences > Chaotic Dynamics

in compressible turbulence

(Submitted on 28 Jul 2011 (v1), last revised 22 Aug 2011 (this version, v2))

We gratefully acknowledge supp the Simons Fo and member ins

Search or Article-id

(<u>Help</u> | <u>Advance</u> All papers

Download:

- PDF
- Other formats

Current browse cont nlin.CD < prev | next >

new | recent | 1107

Change to browse b

astro-ph astro-ph.SR nlin physics physics.flu-dyn

References & Citatio

NASA ADS

Bookmark(what is this?)

The physical nature of compressible turbulence is of fundamental importance in a variety of astrophysical settings. We present the first direct evidence that mean kinetic energy cascades conservatively beyond a transitional "conversion" scale-range despite not being an invariant of the compressible flow dynamics. We use high-resolution three-dimensional simulations of compressible hydrodynamic turbulence on \$512^3\$ and \$1024^3\$ grids. We probe regimes of forced steady-state isothermal flows and of unforced decaying ideal gas flows. The key quantity we measure is pressure dilatation cospectrum, \$E^{PD}(k)\$, where we provide the first numerical evidence that it decays at a rate faster than \$k^{-1}\$ as a function of wavenumber. This is sufficient to imply that mean pressure dilatation acts primarily at large-scales and that kinetic and internal energy budgets statistically decouple beyond a transitional scale-range. Our results suggest that an extension of Kolmogorov's inertial-range theory to compressible turbulence is possible.

The conservative cascade of kinetic energy

Comments: 14 pages, 4 figures Subjects: Chaotic Dynamics (nlin.CD); Solar and Stellar Astrophysics (astro-ph.SR); Fluid Dynamics (physics.flu-dyn) Cite as: arXiv:1107.5771 [nlin.CD] (or arXiv:1107.5771v2 [nlin.CD] for this version)

Submission history

From: Hussein Aluie [view email] [v1] Thu, 28 Jul 2011 17:05:55 GMT (98kb,D) [v2] Mon, 22 Aug 2011 19:35:06 GMT (740kb,D)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.