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Abstract

Equations for the center of gravity of the shower originated by high energy proton in the atmosphere

are written and, within certain simplifications, solved for the case of logarithmically decreasing interaction

length of hadrons in the air. Obtained expression provides transparent view of the way in which hadronic

interaction characteristics determine the longitudinal shower development.

1 Introduction

Since long ago, numerous attempts have been undertaken to explicitely connect air shower longitudinal profile,
in particular the shower maximum depth, with hadronic interaction characteristics.

Very approximate approaches were tried, from toy models to extensions of Heitler model for the electro-
magnetic shower [1] to the hadronic shower [2, 3, 4] and all these have proven to be of not big quantitative
help.

A direct way to establish the connection is use of the cascade theory. A problem is that the shower maximum
is an inconvenient quantity for treatment by cascade equations. Rather, a convenient quantity is the shower
center of gravity (CG). It differs from the shower maximum basically by a shift. Thus, with CG one can trace
the elongation rate of the shower maximum. Even better suited CG for studying the difference in the elongation
rate between shower simulation codes using different interaction models and for separating main factors in the
interaction properties determining this difference.

In this work, equations are written for the center of gravity of the proton initiated shower and within certain
simplifications an analytical solution is derived.

2 Derivation

We consider dependence on energy of the shower center of gravity:

X(E) =

∞
∫

0

X N(X) dX/

∞
∫

0

N(X) dX =

∞
∫

0

X N(X) dX/E

For convenience, further we measure depth in the radiation units, i.e pass to variable t = X/X0. Also, we
measure energy in units of the critical energy Ec.

The proton primary is considered. In simplifying assumptions of Feynman scaling and neglecting production
of other than nucleons and pions particles and neglecting pion decay, the system of equations for the nominator

Φ =
∞
∫

0

tN(t) dt looks:
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ΦN(E) =

1
∫

0

dnN→N

dx
(x)ΦN(Ex)dx +

1
∫

0

dnN→π

dx
(x)Φπ(Ex) dx

+

1
∫

0

dnN→0

dx
(x)Φ0(Ex)dx + E λN(E)

Φπ(E) =

1
∫

0

dnπ→π

dx
(x)Φπ(Ex) dx +

1
∫

0

dnπ→0

dx
(x)Φ0(Ex) dx+ E λπ(E)

Φ0(E) = 2

1
∫

0

dx

x
Φγ(Ex)dx

Here N denotes nucleon, π denotes charged pion, 0 denotes π0, γ denotes photon and dni→j/dx defines dis-
tribution over Feynman x of the secondary particle of type j produced by the primary particle of type i.

For the center of gravity of the electromagnetic shower, ingnoring the Landau-Pomeranchuk effect, we can
obtain:

tγ(E) = lnE + δ

Exact value of δ is unimportant for our goals, in the approximation B of cascade theory it proves to be close
to δ = 1.7.

Accordingly
Φγ(E) = E (lnE + δ)

Let’s apply Mellin transform:

F (s) =

∞
∫

0

E−s−1 F (E) dE

We obtain:

ΦN(s) = ΦN(s)

1
∫

0

xs
dnN→N

dx
(x) dx + Φπ(s)

1
∫

0

xs
dnN→π

dx
(x) dx

+Φ0(s)

1
∫

0

xs
dnN→0

dx
(x) dx + λN(s + 1)

Φπ(s) = Φπ(s)

1
∫

0

xs
dnN→π

dx
(x) dx + Φ0(s)

1
∫

0

xs
dnN→0

dx
(x) dx + λπ(s + 1)

Φ0(s) =
2Φγ(s)

s + 1
=

2

s + 1

{

δ

s − 1
+

1

(s − 1)2

}

Solution of the system of equations is:

ΦN(s) =
Φ0(s)

1 − fNN(s)

[

fNπ(s) fπ0(s)

1 − fππ(s)
+ fN0(s)

]

+
λN(s + 1)

1 − fNN(s)
+

fNπ(s)

1 − fNN(s)
·
λπ(s + 1)

1 − fππ(s)
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Here fij(s) =

∫ 1

0

xs
dni→j

dx
(x) dx

Let’s assume logarithmic dependence of the interaction length on energy:

λ(E) = λ0{1 − α log(E)}

In that case

λ(s + 1) = λ0

{

1

s − 1
−

α

(s − 1)2

}

Let’s apply inverse Mellin transformation to the solution:

ΦN(E) =
1

2πi

∮

EsΦN(s) ds

ΦN(s) is a sum of two terms with poles at s=1:

ΦN(s) = Φ
(1)
N (s)

1

s − 1
+ Φ

(2)
N (s)

1

(s − 1)2

Φ
(1)
N (s) =

2δ

(s + 1)(1 − fNN(s))

[

fNπ(s) fπ0(s)

1 − fππ(s)
+ fN0(s)

]

+
λ
(0)
N

1 − fNN(s)
+

fNπ(s)

1 − fNN(s)
·

λ(0)
π

1 − fππ(s)

Φ
(2)
N (s) =

2

(s + 1)(1 − fNN(s))

[

fNπ(s) fπ0(s)

1 − fππ(s)
+ fN0(s)

]

−
λ
(0)
N · αN

1 − fNN(s)
−

fNπ(s)

1 − fNN(s)
·

λ(0)
π · απ

1 − fππ(s)

The complex integral equals to sum of residues at these poles.

1

2πi

∮

EsΦN(s) ds = ΣresΦN

The contribution of the first pole is

Φ
(1)
N (s = 1) = E

{

δ +
1

1 − gNN

(

λN +
gNπ

gπ0

λπ

)}

,

where gij = fij(s = 1) and we have taken into account that gNN + gNπ + gN0 = 1 and gππ + gπ0 = 1.

The contribution of the second pole is

lim
s→1

d

ds

{

EsΦ
(2)
N (s)

}

,

which equals to

E

{

lnE −
1

2
+

f ′

NN + f ′

Nπ + f ′

N0

1 − fNN

+
fNπ

1 − fNN

·
f ′

π0 + f ′

ππ

1 − fππ

+
αNλ

(0)
N

1 − gNN

(

y +
f ′

NN

1 − gNN

)

+
απλ

(0)
π

gπ0

·
gNπ

1− gNN

(

y +
f ′

NN

1 − gNN

+
f ′

Nπ

gNπ

+
f ′

ππ

gπ0

)

}

,
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where

f ′

ij =
d

ds
fij(s)

∣

∣

∣

∣

∣

∣

s=1 =

1
∫

0

x lnx
dni→j

dx
(x) dx

Let’s denote

µN = f ′

NN + f ′

Nπ + f ′

N0 =

1
∫

0

x lnx

{

dnN→N

dx
(x) +

dnN→π

dx
(x) +

dnN→0

dx
(x)

}

dx

=

1
∫

0

x lnx
dnN→X

dx
(x) dx

and

µπ = f ′

NN + f ′

ππ + f ′

π0 =

1
∫

0

dxx lnx

{

dnπ→π

dx
(x) +

dnπ→0

dx
(x)

}

dx =

1
∫

0

x lnx
dnπ→X

dx
(x) dx,

where index X in the inclusive distributions implies production of particles of any kind.

We obtain for the center of gravity

tN(E) =
1

1 − gNN

{

λ
(0)
N

[

1 − αN

(

lnE +
f ′

NN

1 − gNN

)]

+ µN

}

+
gNπ

(1 − gNN) gπ0

{

λ(0)
π

[

1 − απ

(

lnE +
f ′

NN

1 − gNN

+
f ′

Nπ

gNπ

+
f ′

ππ

gπ0

)]

+ µπ

}

+ lnE + δ −
1

2

This is equivalent to the interaction lengths being taken at some effective, reduced relative to the primary
ones, energies:

Eeff
N = E/ exp

(

f ′

NN

1 − gNN

)

and Eeff
π = Eeff

N / exp

(

f ′

Nπ

gNπ

+
f ′

ππ

gπ0

)

Finally, moving back to depth in g/cm2 and energy in GeV:

XN(E) = X0

(

ln
E

Ec

+ δ −
1

2

)

+
1

1 − gNN

{

λN(Eeff
N ) + X0 · µN +

gNπ

gπ0

[

λπ(E
eff
π ) + X0 · µπ

]

}

Interaction lengths are expressed trough inelastic cross-sections as λ =
A

NA σinel

, where A is atomic mass

and NA is Avogadro number.
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3 Discussion

The final expression for the shower center of gravity explicitly splits into two terms: the center of gravity of
the purely electromagnetic cascade at primary energy and a modification of this by the hadronic cascade. The
latter is determined by two competing oppositely directed processes: i) carrying through energy by hadrons, that
elongates the shower, ii) energy dissipation in the hadronic interactions due to which electromagnetic subshowers
start at smaller energies, and because of the logarithmic energy dependency of their center of gravity that results
in shortening of the total shower. The first proccess is represented by λ terms in the final expression, the second
one is represented by µ terms.

Three main quantity characterizing hadronic interactions are usually considered as governing longitudinal
shower development: inelastic cross-sections, inelasticities and mean multiplicities. Cross-sections directly enter
the final expression for CG through interaction lenghs λ. Inelasticity, or more generally relative energy transfers
between different particle types, also directly enter the expression as gij integrals (inelasticity is the denominator
in front of the curly braces). Whereas multiplicity does not enter the expression as such. Instead, energy splitting
is represented by the integral over inclusive distribution with additional weight x lnx relative to the integral for
the multiplicity. The meaning of this weight is clear: each produced particle contributes to Φ with the weight
which is the product of its energy and of the center of gravity, which is proportional to the logarithm of this
energy.

The obtained expression can provide only semi-quantitative results because of made simplifications, most
important of which are neglecting Feynman scaling violation, production other than nucleons and pions particles
and decay of charged pions. Nevertheless, difference in the elongation rate predicted by different generators
should not be severely influenced by these simplifications.

4 Conclusions

Equations for the center of gravity of the shower from primary high energy proton in the atmosphere are written
and, within assumptions of Feynman scaling, neglecting production of other than nucleons and pions particles
and neglecting charged pion decay, solved for the case of logarithmically decreasing interaction length of nucleons
and pions. Hadronic interactions are represented by inelastic cross-sections, taken at some effective energies,
and integrals over inclusive distributions of two types: relative energy transfers between different particle types,
like inelasticity, defining elongation of the shower via hadronic cascading, and integrals with specific weight
x lnx, reflecting energy dissipation and leading to shortening of the total shower.

Results of applying the obtained expression will be presented in next publications.
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